Optimal sizing for a grid-connected hybrid renewable energy system: A case study of the residential sector in Durban, South Africa


  • Farzad Ghayoor Discipline of Electrical, Electronic and Computer Engineering, University of KwaZulu-Natal, Durban, South Afri-ca https://orcid.org/0000-0001-5780-6767
  • Andrew Swanson Discipline of Electrical, Electronic and Computer Engineering, University of KwaZulu-Natal, Durban, South Afri-ca https://orcid.org/0000-0001-5780-6767
  • Hudson Sibanda Discipline of Electrical, Electronic and Computer Engineering, University of KwaZulu-Natal, Durban, South Afri-ca




Many countries, including South Africa, have introduced policies and incentives to increase their renewable energy capacities in order to address environmental concerns and reduce pollutant emissions into the atmosphere. In addition, consumers in South Africa have faced the ever-increasing price of electricity and unreliability of the grid since 2007 due to the lack of sufficient electricity production. As a result, employing hybrid renewable energy systems (HRESs) have gained popularity. This research focuses on grid-connected HRESs based on solar photovoltaic (PV) panels and wind turbines as a potential way of reducing the dependency of residential sector consumers on the grid. It aims to identify the optimal sizing of renewable energy sources to be cost-effective for consumers over a certain period of time, using Durban as a case study. Two artificial intelligence methods have been used to obtain the optimal sizing for the available PV panels, wind turbines and inverters. The results shown that the combination of PV panels and battery storage can be a profitable option. A system using higher rated power PV panels can start to become profitable in a shorter lifetime, but employing batteries can only be cost-effective if a long enough lifetime is considered.


Download data is not yet available.


Ahadi, A., Kang, S.-K. & Lee, J.-H. 2016. A novel approach for optimal combinations of wind, PV, and energy storage system in diesel-free isolated communities. Applied Energy, 170: 101-115. DOI: https://doi.org/10.1016/j.apenergy.2016.02.110

Akram, U., Khalid, M. & Shafiq, S. 2017a. An innovative hybrid wind-solar and battery-supercapacitor microgrid system—development and optimization. IEEE Access, 5: 25897-25912. DOI: https://doi.org/10.1109/ACCESS.2017.2767618

Akram, U., Khalid, M. & Shafiq, S. 2017b. Optimal sizing of a wind/solar/battery hybrid grid-connected microgrid system. IET Renewable Power Generation, 12: 72-80. DOI: https://doi.org/10.1049/iet-rpg.2017.0010

Akram, U., Khalid, M. & Shafiq, S. 2018. An improved optimal sizing methodology for future autonomous residential smart power systems. IEEE Access, 6: 5986-6000. DOI: https://doi.org/10.1109/ACCESS.2018.2792451

Al Busaidi, A. S., Kazem, H. A. & Khan, M. F. 2014. A review of optimum sizing techniques for off-grid hybrid PV-wind renewable energy systems. International Journal of Students Research in Technology & Management, 2: 93-102.

Alsayed, M., Cacciato, M., Scarcella, G. & Scelba, G. 2013. multicriteria optimal sizing of photovoltaic-wind turbine grid connected systems. IEEE Transactions on Energy Conversion, 28: 370-379. DOI: https://doi.org/10.1109/TEC.2013.2245669

Arabali, A., Ghofrani, M., Etezadi-Amoli, M. & Fadali, M. S. 2013. Stochastic performance assessment and sizing for a hybrid power system of solar/wind/energy storage. IEEE Transactions on Sustainable Energy, 5: 363-371. DOI: https://doi.org/10.1109/TSTE.2013.2288083

Askari, I. B. & Ameri, M. 2012. Techno-economic feasibility analysis of stand-alone renewable energy systems (pv/bat, wind/bat and hybrid pv/wind/bat) in Kerman, Iran. Energy Sources, Part B: Economics, Planning, and Policy, 7: 45-60. DOI: https://doi.org/10.1080/15567240903330384

Askarzadeh, A. 2017. Solution for sizing a PV/diesel HPGS for isolated sites. IET Renewable Power Generation, 11: 143-151. DOI: https://doi.org/10.1049/iet-rpg.2016.0319

Atia, R. & Yamada, N. 2016. Sizing and analysis of renewable energy and battery systems in residential microgrids. IEEE Transactions on Smart Grid, 7: 1204-1213. DOI: https://doi.org/10.1109/TSG.2016.2519541

Bahramara, S., Moghaddam, M. P. & Haghifam, M. R. 2016. Optimal planning of hybrid renewable energy systems using HOMER: A review. Renewable and Sustainable Energy Reviews, 62: 609-620. DOI: https://doi.org/10.1016/j.rser.2016.05.039

Barakat, S., Ibrahim, H. & Elbaset, A. A. 2020. Multi-objective optimization of grid-connected PV-wind hybrid system considering reliability, cost, and environmental aspects. Sustainable Cities and Society, 60: 102178. DOI: https://doi.org/10.1016/j.scs.2020.102178

Brooks, M. J., Du Clou, S., Van Niekerk, W. L., Gauché, P., Leonard, C., Mouzouris, M. J., Meyer, R., Van Der Westhuizen, N., Van Dyk, E. E. & Vorster, F. J. 2015. SAURAN: A new resource for solar radiometric data in Southern Africa. Journal of Energy in Southern Africa, 26: 2-10. DOI: https://doi.org/10.17159/2413-3051/2015/v26i1a2208

Chen, S. X., Gooi, H. B. & Wang, M. 2011. Sizing of energy storage for microgrids. IEEE Transactions on Smart Grid, 3: 142-151. DOI: https://doi.org/10.1109/TSG.2011.2160745

Domestic Electrical Load Study [Online]. Available: https://www.datafirst.uct.ac.za/dataportal/index.php/catalog/DELS [Accessed 12-12-2020 2020].

Elliston, B., Macgill, I. & Diesendorf, M. 2013. Least cost 100% renewable electricity scenarios in the Australian Na-tional Electricity Market. Energy Policy, 59: 270-282. DOI: https://doi.org/10.1016/j.enpol.2013.03.038

EThekwini Electricity Tariffs [Online]. Available: http://www.durban.gov.za/City_Services/electricity/Tariffs/Pages/default.aspx [Accessed 12-12-2020 2020].

Fadaee, M. & Radzi, M. A. M. 2012. Multi-objective optimization of a stand-alone hybrid renewable energy system by using evolutionary algorithms: A review. Renewable and Sustainable Energy Reviews, 16: 3364-3369. DOI: https://doi.org/10.1016/j.rser.2012.02.071

Gan, L. K., Shek, J. K. H. & Mueller, M. A. 2016. Optimised operation of an off-grid hybrid wind-diesel-battery system using genetic algorithm. Energy Conversion and Management, 126: 446-462. DOI: https://doi.org/10.1016/j.enconman.2016.07.062

García Clúa, J. G., Mantz, R. J. & De Battista, H. 2018. Optimal sizing of a grid-assisted wind-hydrogen system. Energy Conversion and Management, 166: 402-408. DOI: https://doi.org/10.1016/j.enconman.2018.04.047

Hove, T. & Tazvinga, H. 2012. A techno-economic model for optimising component sizing and energy dispatch strate-gy for PV-diesel-battery hybrid power systems. Journal of Energy in Southern Africa, 23: 18-28. DOI: https://doi.org/10.17159/2413-3051/2012/v23i4a3175

Hua, Z., Ma, C., Lian, J., Pang, X. & Yang, W. 2019. Optimal capacity allocation of multiple solar trackers and storage capacity for utility-scale photovoltaic plants considering output characteristics and complementary demand. Ap-plied Energy, 238: 721-733. DOI: https://doi.org/10.1016/j.apenergy.2019.01.099

Jacob, A. S., Banerjee, R. & Ghosh, P. C. 2018. Sizing of hybrid energy storage system for a PV based microgrid through design space approach. Applied Energy, 212: 640-653. DOI: https://doi.org/10.1016/j.apenergy.2017.12.040

Khare, V., Nema, S. & Baredar, P. 2017. Optimisation of the hybrid renewable energy system by HOMER, PSO and CPSO for the study area. International Journal of Sustainable Energy, 36: 326-343. DOI: https://doi.org/10.1080/14786451.2015.1017500

Kimera, R., Okou, R., Sebitosi, A. B. & Awodele, K. O. 2014. Considerations for a sustainable hybrid mini-grid system: A case for Wanale village, Uganda. Journal of Energy in Southern Africa, 25: 33-43. DOI: https://doi.org/10.17159/2413-3051/2014/v25i1a2686

Ma, G., Xu, G., Chen, Y. & Ju, R. 2016. Multi-objective optimal configuration method for a standalone wind–solar–battery hybrid power system. IET Renewable Power Generation, 11: 194-202. DOI: https://doi.org/10.1049/iet-rpg.2016.0646

Mahesh, A. & Sandhu, K. S. 2015. Hybrid wind/photovoltaic energy system developments: Critical review and find-ings. Renewable and Sustainable Energy Reviews, 52: 1135-1147. DOI: https://doi.org/10.1016/j.rser.2015.08.008

Maleki, A., Khajeh, M. G. & Ameri, M. 2016. Optimal sizing of a grid independent hybrid renewable energy system incorporating resource uncertainty, and load uncertainty. International Journal of Electrical Power & Energy Sys-tems, 83: 514-524. DOI: https://doi.org/10.1016/j.ijepes.2016.04.008

Mandal, S., Das, B. K. & Hoque, N. 2018. Optimum sizing of a stand-alone hybrid energy system for rural electrifica-tion in Bangladesh. Journal of Cleaner Production, 200: 12-27. DOI: https://doi.org/10.1016/j.jclepro.2018.07.257

Merei, G., Berger, C. & Sauer, D. U. 2013. Optimization of an off-grid hybrid PV–wind–diesel system with different battery technologies using genetic algorithm. Solar Energy, 97: 460-473. DOI: https://doi.org/10.1016/j.solener.2013.08.016

Nnadi, D. B., Odeh, C. I. & Omeje, C. 2014. Use of hybrid solar-wind energy generation for remote area electrification in South-Eastern Nigeria. Journal of Energy in Southern Africa, 25: 61-69. DOI: https://doi.org/10.17159/2413-3051/2014/v25i2a2670

Ogunjuyigbe, A. S. O., Ayodele, T. R. & Akinola, O. A. 2016. Optimal allocation and sizing of PV/Wind/Split-diesel/Battery hybrid energy system for minimizing life cycle cost, carbon emission and dump energy of remote residential building. Applied Energy, 171: 153-171. DOI: https://doi.org/10.1016/j.apenergy.2016.03.051

Paliwal, P., Patidar, N. P. & Nema, R. K. 2014. Determination of reliability constrained optimal resource mix for an autonomous hybrid power system using Particle Swarm Optimization. Renewable Energy, 63: 194-204. DOI: https://doi.org/10.1016/j.renene.2013.09.003

Panayiotou, G., Kalogirou, S. & Tassou, S. 2012. Design and simulation of a PV and a PV–wind standalone energy system to power a household application. Renewable Energy, 37: 355-363. DOI: https://doi.org/10.1016/j.renene.2011.06.038

Rajanna, S. & Saini, R. P. 2016. Development of optimal integrated renewable energy model with battery storage for a remote Indian area. Energy, 111: 803-817. DOI: https://doi.org/10.1016/j.energy.2016.06.005

Sanajaoba, S. & Fernandez, E. 2016. Maiden application of cuckoo search algorithm for optimal sizing of a remote hybrid renewable energy System. Renewable Energy, 96: 1-10. DOI: https://doi.org/10.1016/j.renene.2016.04.069

Sanchez, V. M., Chavez-Ramirez, A. U., Duron-Torres, S. M., Hernandez, J., Arriaga, L. G. & Ramirez, J. M. 2014. Tech-no-economical optimization based on swarm intelligence algorithm for a stand-alone wind-photovoltaic-hydrogen power system at south-east region of Mexico. International Journal of Hydrogen Energy, 39: 16646-16655. DOI: https://doi.org/10.1016/j.ijhydene.2014.06.034

Senjyu, T., Hayashi, D., Urasaki, N. & Funabashi, T. 2006. Optimum configuration for renewable generating systems in residence using genetic algorithm. IEEE Transactions on Energy Conversion, 21: 459-466. DOI: https://doi.org/10.1109/TEC.2006.874250

Sharafi, M. & Elmekkawy, T. Y. 2014. Multi-objective optimal design of hybrid renewable energy systems using PSO-simulation based approach. Renewable Energy, 68: 67-79. DOI: https://doi.org/10.1016/j.renene.2014.01.011

Siddaiah, R. & Saini, R. P. 2016. A review on planning, configurations, modeling and optimization techniques of hy-brid renewable energy systems for off grid applications. Renewable and Sustainable Energy Reviews, 58: 376-396. DOI: https://doi.org/10.1016/j.rser.2015.12.281

Sinha, S. & Chandel, S. S. 2015. Review of recent trends in optimization techniques for solar photovoltaic–wind based hybrid energy systems. Renewable and Sustainable Energy Reviews, 50: 755-769. DOI: https://doi.org/10.1016/j.rser.2015.05.040

Southern African Universities Radiometric Network [Online]. Available: https://sauran.ac.za/ [Accessed 12-12-2020 2020].

Tito, S. R., Lie, T. T. & Anderson, T. N. 2016. Optimal sizing of a wind-photovoltaic-battery hybrid renewable energy system considering socio-demographic factors. Solar Energy, 136: 525-532. DOI: https://doi.org/10.1016/j.solener.2016.07.036

Whelan, B. & Muchapondwa, E. 2011. Enhancing consumers' voluntary use of small-scale wind turbines to generate their own electricity in South Africa. Journal of Energy in Southern Africa, 22: 13-21. DOI: https://doi.org/10.17159/2413-3051/2011/v22i2a3210

Xu, F., Liu, J., Lin, S., Dai, Q. & Li, C. 2018. A multi-objective optimization model of hybrid energy storage system for non-grid-connected wind power: A case study in China. Energy, 163: 585-603. DOI: https://doi.org/10.1016/j.energy.2018.08.152

Xu, L., Ruan, X., Mao, C., Zhang, B. & Luo, Y. 2013. An improved optimal sizing method for wind-solar-battery hybrid power system. IEEE transactions on Sustainable Energy, 4: 774-785. DOI: https://doi.org/10.1109/TSTE.2012.2228509

Zahraee, S. M., Khalaji Assadi, M. & Saidur, R. 2016. Application of artificial intelligence methods for hybrid energy system optimization. Renewable and Sustainable Energy Reviews, 66: 617-630. DOI: https://doi.org/10.1016/j.rser.2016.08.028

Zhao, B., Zhang, X., Li, P., Wang, K., Xue, M. & Wang, C. 2014. Optimal sizing, operating strategy and operational experience of a stand-alone microgrid on Dongfushan Island. Applied Energy, 113: 1656-1666. DOI: https://doi.org/10.1016/j.apenergy.2013.09.015




How to Cite

Ghayoor, F., Swanson, A., & Sibanda, H. (2021). Optimal sizing for a grid-connected hybrid renewable energy system: A case study of the residential sector in Durban, South Africa. Journal of Energy in Southern Africa, 32(4), 11–27. https://doi.org/10.17159/2413-3051/2021/v32i4a10356