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Abstract 
Many countries, including South Africa, have introduced policies and incentives to increase their renewable 
energy capacities in order to address environmental concerns and reduce pollutant emissions into the atmos-
phere. In addition, consumers in South Africa have faced the ever-increasing price of electricity and unreliabil-
ity of the grid since 2007 due to the lack of sufficient electricity production. As a result, employing hybrid 
renewable energy systems (HRESs) have gained popularity. This research focuses on grid-connected HRESs 
based on solar photovoltaic (PV) panels and wind turbines as a potential way of reducing the dependency of 
residential sector consumers on the grid. It aims to identify the optimal sizing of renewable energy sources to 
be cost-effective for consumers over a certain period of time, using Durban as a case study. Two artificial intel-
ligence methods have been used to obtain the optimal sizing for the available PV panels, wind turbines and 
inverters. The results shown that the combination of PV panels and battery storage can be a profitable option. 
A system using higher rated power PV panels can start to become profitable in a shorter lifetime, but employing 
batteries can only be cost-effective if a long enough lifetime is considered.  
 
Keywords: cost-effective HRES; genetic algorithm optimiser; particle swarm optimiser; wind and solar hybrid 
energy systems 

Highlights: 
• Modelling the load and a HRES based on the residential consumer needs and available products.  
• Defining the optimisation problem based on a cost evaluation indicator and identifying constraints.  
• Determining the optimum combination of renewable energy sources.   
• Assessing the cost of setting up a HRES for typical residential consumers.  
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1.  Introduction 

The availability of wind and solar in most areas and 
the maturity of the technology needed for generat-
ing electricity from such sources make them popu-
lar choices in hybrid renewable energy systems 
(HRESs). Wind and solar have complementary char-
acteristics and so are suitable sources to be com-
bined in a hybrid energy system. However, they  
both have intermittent natures and are highly de-
pendent on environmental conditions.  

Hybrid energy systems can be designed to work 
as stand-alone or grid-connected systems and can 
benefit from energy storage (ES) units. Regardless  
of the number and type of energy sources combined 
to form a hybrid energy system, optimisation is an 
important stage in designing such a system. 
Through optimisation, the best design with regard 
to certain criteria and constraints can be obtained.  
The design objectives used in optimising a hybrid 
energy system can be technical, financial, environ-
mental, social, or a combination of these.  

This research seeks to identify the optimal size 
of a grid-connected solar PV-wind-battery storage 
(BS) hybrid system that is cost-effective compared 
to a purely grid-connected system. In other words,  
it tries to identify the optimal size of each HRES 
component so that a consumer can recover an in-
vestment over a certain period of time through the 
reduced cost through purchasing less electricity  
from the grid’s service provider. Solar and wind en-
ergy are location-based; this study has been based 
on the meteorological data of the coastal city of Dur-
ban, South Africa.  

2. Literature review 

Solar energy is random and intermittent, and usu-
ally ES systems are used to mitigate this character-
istic. In solar-ES systems, the excess energy  
generated by PVs during the day can be stored to 
meet the load demand at night (Jacob et al., 2018; 
Hua et al., 2019). Wind turbines can also be com-
bined with an ES unit in a wind-ES configuration. In 
such a configuration, the ES, which is in the form of 
a battery, is used to stabilise fluctuation associated 
with wind power (Xu et al., 2018), in addition to 
providing storage for the excessive generated 
power (García Clúa et al., 2018). The viability of 
consumer-based small-scale wind turbines for con-
sumers in South Africa has been studied by Whelan 
and Muchapondwa (2011). A solar-BS configura-
tion appears to be superior to the wind-BS system, 
according to Askari and Ameri (2012), because of 
possible sudden drops in wind speed. However,  
Maleki et al. (2016) presented contrasting results in 
another area. Likewise, Khare et al. (2017) obtained 
opposing conclusions in different regions based on 
the economy of the system. Therefore, it can be seen 
that design approaches will vary from one region to 

another because of meteorological and load charac-
teristics, so it is important to reasonably select the 
energy resources for a specific area for which the 
hybrid system would be used. 

Another possible configuration is wind-solar-BS 
(Atia and Yamada, 2016; Ahadi et al., 2016; Nnadi et 
al., 2014). The complementary nature of wind and 
solar in this configuration reduces the storage re-
quirements and improves system availability. The 
optimum results for off-grid hybrid systems show 
that the wind-solar-BS systems require less battery  
storage capacity and so can be realised at a lower 
cost than wind-BS and solar-BS systems (Panayio-
tou et al., 2012; Sanajaoba and Fernandez, 2016).  

A wind and solar hybrid system can also be com-
bined with non-renewable sources of energy. For 
example, a combination of wind, solar, and backup 
generators is very common in off-grid HRESs 
(Askarzadeh, 2017). To further reduce pollutant 
emissions, an ES is added to this configuration 
(Akram et al., 2018; Hove and Tazvinga, 2012) so 
that diesel fuel is only used when power generated 
by wind, solar and ES is insufficient (Mandal et al., 
2018). Nevertheless, including batteries increases  
the maintenance cost of the system, as they have a 
short lifespan and must be replaced more often.  

Grid-connected wind-solar HRESs have been 
considered by Alsayed et al. (2013) and Barakat et 
al. (2020). In this setup, the main source of power is 
from the renewable energy sources (RES), and the 
grid provides the deficit power only if RES cannot 
meet the load demand. It is also common to con-
sider an ES for the wind-solar-grid configuration 
(Senjyu et al., 2006; Xu et al., 2013; Akram et al., 
2017a; Akram et al., 2017b). In the wind-solar-E S-
grid configuration, if the load is not satisfied by the 
wind-solar system, the deficit power is obtained 
from the ES. If the power from the ES is still insuffi-
cient, the required power will then be obtained 
from the grid. This combination utilises the comple-
mentary nature of solar and wind and the charge 
and discharge cycles of the BS to improve the sys-
tem’s reliability. The power from the grid would re-
duce energy storage requirements and improve 
system reliability. Senjyu et al. (2006) presented 
optimum configurations for hybrid systems for a 
residential building based on annual hourly data.  
The model was developed using the average electri -
cal energy consumption of a single house in Oki-
nawa in Japan. The aim was to minimise the total  
cost of the system, which is composed of the sum of 
initial, operational, and maintenance costs per year.  
Xu et al. (2013) presented an improved optimisa-
tion method for both stand-alone and grid-con-
nected wind-solar-BS HRES to minimise the 
system’s total cost, and showed that the grid-con-
nected system could generate smoother power,  
with higher reliability and lower cost. 
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Optimal sizing is an essential aspect of designing 
HRESs, which helps to achieve a desired level of re-
liability at the least possible costs (Al Busaidi et al., 
2014). To optimise an HRES, first, objective func-
tions must be developed according to specific eval-
uation indicators. These indicators can cover the 
economic, reliability, social, and environmental as-
pects of the system. Optimisers will then be used to 
find the most suitable solution of the defined objec-
tive functions (Fadaee and Radzi, 2012). Optimisers  
that have been used in the sizing problem of the 
HRESs are generally classified as classical tech-
niques, modern techniques and software tools. In 
classical techniques, objective functions are esti-
mated by deterministic or probabilistic functions  
(Sinha and Chandel, 2015) and their optimum solu-
tions are either found by differential calculus or 
through searching the whole design space with iter-
ative methods (Siddaiah and Saini, 2016). However,  
the complexity of the HRESs’ sizing problems in-
creases as a result of the uncertainties related to 
RES and the technical factors associated with a sys-
tem’s location and its constructing components .  
This makes classical techniques less effective in 
solving such problems. As a result, there was a shift 
towards the use of modern techniques, which are 
based on meta-heuristics algorithms (Sinha and 
Chandel, 2015; Sharafi and Elmekkawy, 2014). Such 
algorithms, which are known as modern tech-
niques, do not use differential calculus for finding 
descent directions. Instead, they use a large number 
of points throughout the design space looking for 
the optimal solution. In addition to mathematical  
methods, there are different software tools, which 
are available for optimising HRES. Hybrid optimisa-
tion model for electric renewables (HOMER) and 
Improved hybrid optimisation by genetic algorithm 
(iHOGA) are the most widely used packages used 
for finding optimal sizing (Mahesh and Sandhu,  
2015; Bahramara et al., 2016; Kimera et al., 2014). 

Genetic algorithm (GA) is amongst the best arti-
ficial intelligence optimisation algorithms. It has 
been used by many researchers to determine the 
optimal size of HRESs (Zhao et al., 2014,  
Ogunjuyigbe et al., 2016, Rajanna and Saini, 2016,  
Elliston et al., 2013, Gan et al., 2016, Merei et al., 
2013). Particle swarm optimisation (PSO) is an-
other widely used heuristic algorithm, which boasts  
high efficiency and fast convergence speeds, and it 

is quite easy to implement (Paliwal et al., 2014; 
Sanchez et al., 2014). Nevertheless, the perfor-
mance of PSO in optimising a system with four or 
more decision variables is low and, as a result, the 
optimised solutions become inadequate. Addition-
ally, PSO may have a tendency of being stuck in local 
optima (Zahraee et al., 2016). GA, however, can 
avoid being trapped in local optima, but it requires  
a large number of iterations, which increases its 
computational time. Combining an exhaustive 
search algorithm with GA can overcome this limita-
tion. The resulting hybrid algorithm can utilise GA’s 
good convergence as well as its ability to avoid be-
ing stuck in local optima and advantage of lower 
computational time and effectiveness of an exhaus-
tive search algorithm in finding optimal results  
(Tito et al., 2016). The long computational time of 
GA can also be overcome by using a stochastic  
model (for example, Markov) or chronology to fore-
cast future state assumed from its current state. The 
high performance of GA can be combined with PSO  
to improve the accuracy of the solutions and global  
optimisation ability (Ma et al., 2016). 

This research uses GA and PSO to find the opti-
mum configurations for a grid-connected HRES for 
a residential building in Durban. The weather con-
dition in Durban is such that the wind-solar combi-
nation cannot fully achieve its expected comp-
lementary characteristics, and so the obtained con-
figuration can be different from other studies. We 
further improve the GA algorithm, compared with  
the work of Senjyu et al., 2006) work, which in-
creases its speed without making a sacrifice on the 
optimiser performance. It is shown that the proposed 
GA has a faster convergence speed than the PSO. 

3. Materials and methods 

3.1 Materials 
Meteorological data 
The meteorological data used in this research are 
obtained from the Southern African Universities  
Radiometric Network (SAURAN, 2020) database 
(Brooks et al., 2015) for Durban station, with details  
given in Table 1. The average hourly data (8760 
hours) was used, starting from January. The annual  
hourly data and histograms for Global Horizontal Ir-
radiance (GHI), temperature and wind speed for 
this station is shown in Figure 1 (a)-(c). The statis-
tics for the collected data are presented in Table 2. 

 
Table 1: Meteorological station location. 

Location Latitude Longitude Elevation Topography 

Durban, S. Africa -29.87097931 30.97694969 150 m Roof of Desmond Clarence building 
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Table 2: Meteorological data statistics. 

 Mean Standard Minimum 25% 50% 75% Maximum 

GHI [W/m2] 189.02 281.62 0.0 0.0 4.51 323.73 1116.0 

Temperature [℃] 20.65 3.43 10.63 18.33 20.75 23.10 34.99 

Wind speed [m/s] 2.16 1.60 0.00 0.90 1.94 3.15 10.95 

 
  

(a) 

  

(b) 

  

(c) 

Figure 1: Annual meteorological data: (a) global horizontal irradiance (GHI), (b) temperature,  

(c) wind speed. 
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Figure 2: Typical daily load profile. 

  
Figure 3: Annual load profile. 

 
Table 3. Load statistics [kWh]. 

Mean Standard Minimum 25% 50% 75% Maximum 

0.68 0.32 0.06 0.46 0.65 0.85 2.55 

Load profile 
The data for the load profile was obtained from the 
study funded by the South African National Energy  
Development Initiative and done by Stellenbosch 
University and the University of Cape Town on pro-
filing domestic electrical load (DELS, 2020). The 
data used was collected from an 80 m2 residential  
building in Durban. Figure 2 shows the typical daily 
load profile for a high-consumption and a low-con-
sumption month. The annual load profile of the 
given building is shown in Figure 3 and its corre-
sponding statistics are recorded in Table 3. As is 
seen, the average hourly load consumption is 0.68 
kWh with the peak value of 2.55 kWh. These are im-
portant pieces of information for selecting the cor-
rectly sized inverter. 

HRES model 
The hybrid energy system considered in this study  
is shown in Figure 4. It consists of PV arrays, wind 
turbines and battery storage systems. The selected 
wind turbines are considered to be equipped with 
internal rectifiers and battery storage. As a result,  
the output of the wind turbine is in the form of DC 
power. The output of PV arrays, wind turbines and 
BS are all integrated into a DC bus. Although it is 
common that a grid-connected hybrid system in-
jects its excessive generated power back to the grid,  
the eThekwini municipality has not finalized its 
small-scale embedded generation systems’ tariffs.  
Therefore, this research, instead of injecting the ex-
cessive power generated by RES back to the grid,  
tries to find the best solution to store the energy  
within the system or dump it if necessary.  
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Figure 4: Diagram of the grid-connected hybrid renewable energy system. 

The power output of a wind turbine, 𝑃𝑊𝑇 , can be 
calculated according to the wind speed at time 𝑡 , 
𝑣(𝑡), as in Equation 1 (Arabali et al., 2013). 

𝑃𝑊𝑇 (𝑡) =

{
 
 

 
 

0  𝑣(𝑡) < 𝑣𝑐𝑖

𝑃𝑟𝑎𝑡𝑒𝑑 ×
𝑣(𝑡)−𝑣𝑐𝑖

𝑣𝑟−𝑣𝑐𝑖
𝑣𝑐𝑖 ≤ 𝑣(𝑡) < 𝑣𝑟

𝑃𝑟𝑎𝑡𝑒𝑑  𝑣𝑟 ≤ 𝑣(𝑡) < 𝑣𝑐𝑜
0 𝑣(𝑡) ≥ 𝑣𝑐𝑜

  (1) 

𝑣𝑐𝑖 : cut in speed 
𝑣𝑟  : rated speed  
𝑣𝑐𝑜 : cut-out speed 
𝑃𝑟𝑎𝑡𝑒𝑑  : rated power of the wind turbine 

 
The selected wind turbine for this study is 

Kestrel e160i-600W, whose characteristics are 
given in Table 4. The rating is selected to be close to 
the average demand. The annual output power of 
this turbine based on the wind speed data given in 
Figure 1 is calculated by Equation 1 and is shown in 
Figure 5. 

Figure 5: Annual wind turbine output. 

Table 4. Wind turbine parameters. 

Maximum power  700 W 

Rated output  600 W 

Rated wind speed  13.5 m/s 

Cut-in wind speed  2.5 m/s 

Output voltage (Vdc)  24 
48 

110 
220 

Price  ZAR 21 968.00 

 

Three PV panels were considered: Cinco 50W,  
Cinco 100W, and Cinco 200W. Their specifications, 
together with their current price on the market, are 
given in Table 5. The PV system’s hourly output 
power can be calculated by Equation 2 (Chen et al., 
2011). 

𝑃𝑃𝑉 (𝑡) = 𝐴𝑃𝑉𝜂𝑃𝑉𝐼(𝑡)(1 − 0.005(𝑇0 (𝑡) − 25))  (2) 

𝐴𝑃𝑉   : The panel area in m2 
𝜂𝑃𝑉  : The panel efficiency 
𝐼  : The solar irradiation in kW/m2  
𝑇0  : The atmospheric temperature in ℃ 

 
However, according to the panel specifications, 

the generated power by these panels has a 90% 
yield in 10 years and 80% in 25 years. To reflect 
these in our simulation, a linear decline in the per-
formance of PV panels in their lifetime is consid-
ered, so Equation 2 is modified to Equation 3.  

𝑃𝑃𝑉(𝑡) = (1−0.00067𝑚)𝐴𝑃𝑉𝜂𝑃𝑉𝐼(𝑡)(1−0.005(𝑇0(𝑡) −25))

 (3) 

where 𝑚 is the number of months in the system’s 
lifetime. This means that, after 120 months (10  
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years), the coefficient value is equal to 1 −
0.00067 × 120 = 0.9 and after 300 months (25 
years) it is equal to 0.8. The annual output power 

for each panel is shown in Figure 6. As is seen, the 
output power increases until it reaches its maxi-
mum power for each panel. 

Table 5. PV panels’ parameters. 

Max. power at STC (Pmax) 50W 100W 200W 

Optimum operating voltage 17.8V 36.6V 36.45V 

Optimum operating current 2.81A 2.73A 5.488A 

Open-circuit voltage 22.00V 45.38V 44.37V 

Short-circuit current 3.01A 2.92A 6.01A 

Solar module efficiency (%) 14.01 14.01 15.67 

Dimension 

(L × W × D) 

695 mm × 510 mm 
 × 25 mm 

1020 mm × 680 mm  
× 30 mm 

1 580 mm × 808 mm  
× 35 mm 

Warranty 10 years power  
warranty (90% yield) 

25 years power  
warranty (80% yield) 

10 years limited  
product warranty, 

(90% yield) 

25 years power  
warranty (80% yield) 

10 years limited  
product warranty, 

(90% yield) 

25 years power  
warranty (80% yield) 

Price ZAR 632.99 ZAR 999.01 ZAR 1 890.00 

 

Figure 6: Annual PV power output per panel: (a) Cinco 50W, (b) Cinco 100W, (c) Cinco 200W. 

Based on the configuration of the proposed 
HRES and by considering the load profile, a 3kW hy-
brid inverter can provide sufficient power. The bat-
tery type used in this study is a SonX 100Ah 12V 

AGM, which were used in a bundle of four to be suit-
able for operating with the selected inverter. The in-
verter and battery parameters are given in Tables 6 
and 7. 

Table 6. Inverter parameters. 

Model  RCT-AXPERT 3K - 48V 

Rated power  3000VA/3000W 

Input voltage  230 VAC 

Frequency range  50 Hz/60 Hz (Auto sensing) 
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Output 

AC voltage regulation  230 Vac ± 5% 

Surge power  6000VA for 5 sec 

Efficiency (peak)  93 % at line mode, 90% at battery mode 

Battery 

Battery voltage  48 Vdc 

Floating charge voltage  27 Vdc 

Overcharge protection  31 Vdc 

Solar charger & AC charger 

Solar charger type  MPPT 

Maximum PV array power 900 W 

Maximum PV array open circuit voltage  102 Vdc 

Maximum solar charge current  18 A 

Maximum AC charge current  15 A 

Maximum charge current  33 A 

Price  ZAR 8 670 

Table 7: Battery parameters. 

Battery  SonX 100Ah 12V AGM 

Cells per unit  6 

Voltage per unit  12V 

Capacity  100Ah@10hr-rate to 1.80V per cell @ 25°C 

Max. discharge current 1000A (5 sec) 

Recommended maximum charging current limit 30A 

Price  ZAR 3 193.00 

Tariff rates 
The tariff rates used in this study were obtained 
from the eThekwini website (eThekwini Electricity 
Tariffs, 2020). Table 8 shows the eThekwini tariffs  
structure from 2008 to 2020 for single-phase resi-
dential users. Figure 7 shows the graphical repre-
sentation of the tariff structure from 2008 to 2020 
and the extrapolation for 2020 to 2030. Cubic (3rd 
order) polynomial trendline was used, as the best-
fitted line, to fit the data from 2008 to 2020 and to 
predict the tariff till 2030. The prediction gives an 
annual increase of 11.8%, which is in-line with the 
historical 11.3% tariff increase from 2008 to 2020 
(see Figure 7). 

Table 8. eThekwini single phase residential tariff. 

Year Single-phase residential 
tariff [c/kWh] 

2008 58.0807 

2009 73.2979 

2010 90.16 

2011 106.83 

2012 117.29 

2013 124.375 

2014 131.46 

2015 147.5 

2016 158.78 

2017 161.77 

2018 174.35 

2019 197.14 

2020 209.4 
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Figure 7: Single phase residential tariff in eThekwini municipality. 

Figure 8: System operation flowchart. 

3.2 Methodology 
System operation 
Figure 8 shows the system operation flowchart. At 
any given time, a comparison between the load de-
mand, 𝑃𝐿 , and energy produced by RES is made. If 
the demand is less than the energy produced by 
RES, the excess energy will be used to charge the BS, 

and upon the BS reaching its full capacity the exces-
sive power will be dumped. On the condition that 
the load demand is greater than the energy pro-
duced by RES, the system uses the power stored in 
the BS to cover a part or all the power deficiency. If 
the BS does not contain sufficient energy, then the 
deficit energy should be purchased from the utility 

 

𝑃𝐵𝑆(𝑡) > 𝑃𝐵𝑆_𝑚𝑖𝑛  

 

𝑃𝐿(𝑡) > 𝜂(𝑃𝑃𝑉(𝑡)+𝑃𝑊𝑇(𝑡) +𝑃𝐵𝑆(𝑡)) 

y = 0,0982x3 - 593,19x2 + 1E+06x - 8E+08
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grid (UG). The BS can be discharged until its power 
reaches a minimum value of 𝑃𝐵𝑆_𝑚𝑖𝑛 . The inverter 
efficiency is denoted by 𝜂. 

Proposed optimisation method 
The optimisation objective in this research is to 
minimise the cost of the hybrid system such that the 
user would be able to pay back the cost of the sys-
tem by the money saved over a period of time as a 
result of using RES for generating electricity. NPV 
was used for calculating the cost function (Equation 
4). 

𝑁𝑃𝑉 = 𝐶𝑖𝑛𝑣𝑒𝑠𝑡𝑚𝑒𝑛𝑡 + ∑𝑁𝑃𝑉𝑂𝑀 − ∑𝑁𝑃𝑉𝑖𝑛𝑐𝑜𝑚𝑒    (4) 

𝐶𝑖𝑛𝑣𝑒𝑠𝑡𝑚𝑒𝑛𝑡  : The value of initial investment includ-
ing installation. 
𝑁𝑃𝑉𝑂𝑀  : The net present value of operation and 
maintenance cost 
𝑁𝑃𝑉𝑖𝑛𝑐𝑜𝑚𝑒  : The net present value of the income 
generated by using the HRES 

 
By considering an additional 20% of the compo-

nent prices for installation, the investment costs 
(inclusive of installation) can be calculated by Equa-
tion 5. 

𝐶𝑖𝑛𝑣𝑒𝑠𝑡𝑚𝑒𝑛𝑡 = (𝑁𝑃𝑉𝑃𝑉𝑝𝑟𝑖𝑐𝑒 + 𝑁𝑊𝑇𝑊𝑇𝑝𝑟𝑖𝑐𝑒 +

 𝑁𝐵𝑆𝐵𝑆𝑝𝑟𝑖𝑐𝑒 + 𝐼𝑁𝑉𝑝𝑟𝑖𝑐𝑒 ) × 1.2  (5) 

𝑃𝑉𝑝𝑟𝑖𝑐𝑒  : The price of a single PV panel  
𝑊𝑇𝑝𝑟𝑖𝑐𝑒  : The price of a single wind turbine 
𝐵𝑆𝑝𝑟𝑖𝑐𝑒  : The price of a single bundle of battery  
storage 
𝐼𝑁𝑉𝑝𝑟𝑖𝑐𝑒  : The price of a single inverter  
NPV , N𝑊𝑇 , N𝐵𝑆  are the number of installed PV pan-
els, wind turbines and battery packs, respectively.  
Other assumed economic data are given in Table 9. 

Table 9: Considered economic data for  
the system. 

Annual operation and main-
tenance costs  

2% of initial 
purchase costs 

Nominal annual interest rate 3.7% 

Annual inflation rate 4.6% 

 
The money saved as a result of using RES to gen-

erate electricity instead of purchasing it from the 
grid is considered as an income for the system. This 
income is used to recover the initial investments  
and operation and maintenance costs. The monthly  
power generated by the RES can be determined,  
and the income is therefore equal to the product of 
this amount and the tariff at a given time.  

There are three constraints in this optimisation 
problem, which are on the number of PV panels,  

wind turbines and the BS units. These numbers  
should be positive integers. Also, the maximum 
number of PV panels should not exceed the availa-
ble installation area of the proposed site. The PV 
panel dimensions considered in this study are given 
in Table 5. 

Optimisers 
GA and PSO have been used to find the optimal so-
lution of Equation 4 constrained by the maximum 
number of system components. Tables 10 and 11 
give the parameters used for developing the GA and 
PSO optimisers. 

Table 10: Parameters used in the GA optimiser. 

Parameters Values 

Maximum number of iterations None 

Maximum number of iterations 
without improvement 

10 

Population size 100 

Mutation probability 10% 

Elite ratio 10% 

Cross over probability 50% 

Parents portion 30% 

Crossover type Uniform 

Table 11: Parameters used in the PSO  
optimiser. 

Parameters Values 

Maximum number of iterations 100 

Population size 30 

Individual learning factor 0.5 

Social learning factor 0.3 

Inertia weight 0.9 

 

4. Results and discussions 

The cost function’s value shows the amount of 
money spent on the HRES after a certain number of 
years. Therefore, a negative value shows a profita-
ble system configuration. Python3 has been used on 
an Intel core 1.8 GHz i5 processor to simulate the 
system and obtain the optimal solutions. This sec-
tion first provides a comparison between GA and 
PSO in identifying the optimal size of our consid-
ered HRES over 10 years of lifetime. The number of 
PV panels is constrained by the surface area of the 
selected building rooftop. All systems were allowed 
to have wind turbines and BS. 

There is usually no restriction on the number of 
iterations for obtaining the optimal values in the GA 
algorithm. Instead, the algorithm will usually be set 



21    Journal of Energy in Southern Africa • Vol 32 No 4 • November 2021 

to stop when 95% of the genes converge. However,  
this takes a long time and, in this particular prob-
lem, it was realised that without making a sacrifice 
on the optimiser performance the optimisation 
could be stopped after 10 iterations with-no-fur-
ther-improvement. Therefore, we considered this 
stopping criterion in addition to the GA parameters  
given in Table 10. PSO, on the other hand, is limited 
by the number of iterations. In PSO algorithms, the 
optimal solution is obtained by moving the particles  
through the search space until the algorithm 
reaches its maximum number of iterations, which is 
considered as 100 iterations.  

As an example, the transition of the cost function 
with respect to iterations for optimising a hybrid 
system using 200W PV panels is shown in Figure 9. 
For this system, GA requires seven iterations to 
reach the optimal solution, and the algorithm stops 
after 17 iterations. However, the PSO algorithm 
could not obtain the optimal solutions and only 
stops as a result of reaching its iteration limit.  

In Table 12, a comparison between the perfor-

mance of GA and PSO optimisers in optimising sys-

tems with 10 years of lifetime is given. For a system 
using a 200 W PV panel, GA provides the optimal  

sizing as a system with 21 PV panels, no wind tur-

bines and 2 battery storage units. The value of the 
cost function for this system is –R45 395.70. PSO,  

on the other hand, was only able to minimise the 

cost function to the value of –R45 299.40. This is 
achieved by a system containing 22 PV panels, no 

wind turbines and two battery storage units. The 

other interesting observation is that the GA not only 
has a better performance over PSO but also can 

achieve this over a shorter period. The total simula-

tion time using GA was 528.9 seconds, while the 
same for the PSO was 1066.4 seconds. This is due to 

the modification made to the GA – to stop it after 10 

iterations without improvement. Similar perfor-
mance can be observed for a HRES using 100W and 

50W PV panels. 

(a)  (b) 

Figure 9: The transition of cost function considering systems over 10 years of lifetime with  

(a) 200W PV panels optimised by GA, (b) 200W PV panels optimised by PSO. 

Table 12: A comparison between the performance of GA and PSO optimisers in optimising  
the system with a 10 year lifetime. 

Type of PV Panel Optimiser The optimal size Cost function value Simulation 
time (s) 

𝑁𝑃𝑉  𝑁𝑊𝑇 𝑁𝐵𝑆  

200 W GA 21 0 2 -R45 395.70 528.9 

PSO 22 0 2 -R45 299.40 1066.4 

100 W GA 41 0 2 -R40 616.40 513.3 

PSO 43 0 2 -R39 332.00 1159.3 

50 W GA 74 0 2 -R27 618.50 651.01 

PSO 80 0 2 -R27 171.90 1160.1 
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Table 13: The optimal size and cost function value of the system considering different  
PV panel types and system’s lifetime (optimised by GA). 

Type of PV panel System’s lifetime 
[Years] 

Optimal size Cost function value 

𝑁𝑃𝑉  𝑁𝑊𝑇 𝑁𝐵𝑆  

200 W 10 21 0 2 -R45 395.70 

9 20 0 2 -R27 010.90 

8 18 0 2 -R10 835.30 

7 6 0 0 -R1 828.90 

6 5 0 0 R2 494.20 

100 W 10 41 0 2 -R40 616.40 

9 40 0 2 -R22 622.80 

8 26 0 1 -R8 582.90 

7 12 0 0 -R507.80 

6 15 0 0 R4 878.50 

50 W 10 74 0 2 -R27 618.50 

9 68 0 2 -R10 701.60 

8 23 0 0 -R1 364.80 

7 24 0 0 R3 393.10 

 
In all three systems, GA can achieve a sizing that 

provides a lower-valued cost function in a shorter 
amount of time than the PSO algorithm. Moreover,  
in both methods, the required time for solving the 
optimisation problem is directly proportional to the 
size of the search space. This can be seen by com-
paring the required time for optimising the system 
components’ size for different types of PV panels.  
The surface area of the 200 W PV panels is larger 
than the others, and so the maximum number of the 
200 W PV panels that can be installed is less than 
the other two types. As a result, the search space for 
the 200 W is the smallest among the three, followed 
by the 100 W and 50 W panels. Due to the GA algo-
rithm’s superiority, that was to find the optimal size 
of the HRES’s components for different system’s 
lifetimes by setting the algorithm to stop after 10 it-
erations without improvements. 

The optimal size and cost function value of sys-
tems using different types of PV panel and lifetime 
are shown in Table 13. All the values are obtained 
using the GA algorithm. It can be seen from the table 
that the system profitability increases by its life-
time. This means that the system can generate more 
income over a longer period of time as the income 
of the first few years would be used to cover the in-
itial costs. Moreover, the profitability is increased 
by using PV panels with higher rated power. This is 
because the per Watt price of the PV panels de-
creases as the PV panel rated power increases. In 

other words, a 200 W PV panel cost is less than the 
fourfold price of a 50 W PV panel.  

A HRES using the 100W and 200W can start be-
coming profitable after six years, while a user of a 
HRES based on the 50W panel should wait for at 
least seven years. The other finding is that, in the 
Durban area, employing wind turbines (based on 
the selected specification and price) would not be a 
cost-effective option. One reason can be because of 
the weather conditions in Durban, which, unlike 
many other locations, has a lesser wind speed dur-
ing winter than in summer. So, the wind-solar com-
bination cannot fully achieve its expected 
complementary characteristics. Moreover, employ-
ing BS can only become an economic decision if a 
long enough lifetime for a system is considered.  
This means that storing energy is not always an eco-
nomical choice: sometimes dumping the excess  
power would become more cost-effective. 

Table 14 gives the breakup of the cost function 
values given in Table 13 based on their different 
components. By studying this table, it can be seen 
how much of the income would be spent to recover 
the initial investment and how much it costs to 
maintain the system over a given lifetime. In all  
cases, the income value is greater than the summa-
tion of the initial investment and the operation and 
maintenance costs, making the total cost a negative 
value.  
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Table 14: The cost components of the system considering different PV panel types and  
system’s lifetime (optimised by GA). 

Type of PV 
panel 

System’s life-
time [Years] 

Costs 

𝐶𝑖𝑛𝑣𝑒𝑠𝑡𝑚𝑒𝑛𝑡  ∑𝑁𝑃𝑉𝑂𝑀 ∑𝑁𝑃𝑉𝑖𝑛𝑐𝑜𝑚𝑒 

200 W 10 R81 842.00 R12 661.90 R139 899.70 

9 R79 574.00 R11 296.00 R117 881.00 

8 R75 038.00 R9 679.10 R95 552.30 

7 R22 278.00 R2 527.00 R26 634.00 

100 W 10 R83 364.80 R12 879.40 R136 860.60 

9 R82 166.00 R11 634.80 R116 423.60 

8 R52 610.80 R6 726.00 R67 919.80 

7 R23 055.60 R2 608.90 R26 172.30 

50 W 10 R90 424.40 R13 887.30 R131 930.20 

9 R85 866.80 R12 118.6 R108 686.90 

8 R26 140.80 R3 295.1 R30 800.60 

Operation of the system with optimal configuration 
This section considers the operation of an optimally 
configured HRES. The system is optimally sized 
over 10 years of lifetime. Figure 10 shows the aver-
age annual consumption of the system from the grid 

and PV panels for different panel types. The hori-
zontal axis shows the days over a period of one year,  
starting from the first day of January, and the verti-
cal axis shows the consumption (in kWh).
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(c) 

Figure 10: Average annual consumption from the grid and RES for an optimally sized  

system composed of (a) 200W, (b) 100W, (c) 50W PV panels. 

As is seen, there is more power consumption 
from the grid during winter, where the demand is 
high, and the solar irradiation is low. However, dur-
ing summer, where the solar irradiation is high, the 
PV panels generate more power. As a result of lower 
demand, the power generated by the PV panels on 
some summer days is sufficient to be the sole source 
of power for the system. Figure 11 shows the aver-
age annual stored and dumped power for the opti-
mally sized HRES using different types of PV panels.  

The statistics for this figure are tabulated in Table 
15. As is shown, the amount of stored power is in-
creased by employing higher power PV panels.  
Moreover, as expected, more energy was dumped 
during summer as there is more excessive gener-
ated power due to high solar irradiation and low 
consumption. However, during wintertime, where 
the load demand is high, all the generated energy by 
the PV panels is either stored or used by the load. 

Table 15: The average values of the battery storage and load dump for the optimal system. 

200W PV panel 100W PV panel 50W PV panel 

Average battery 
storage (kWh) 

Average load 
dump (kWh) 

Average battery 
storage (kWh) 

Average load 
dump (kWh) 

Average battery 
storage (kWh) 

Average load 
dump (kWh) 

3.602 0.188 3.424 0.160 3.149 0.121 
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 (b) 

(c) 
 

Figure 11: Averaged annual BS and load dump for the optimal size system with 10-year lifetime, 

using (a) 200W, (b) 100W (c) 50W PV panels. 

 

5. Conclusion 

The focus of this research was to identify the opti-
mal sizing of a grid-connected HRES that is cost-ef-
fective for consumers over a period of time. By 
developing an optimal system, the consumers’ de-
pendency on the grid is reduced while the net cost 
of their electricity over a period of time is lowered.  
To achieve this, the system components and con-
straints were identified, and then a mathematical  
model of the system was developed and optimised.  
The case study for this research was a residential  
building in Durban. It was shown that a minimum of 
six years is required for the HRES to be profitable to 
the user. It was also shown that despite an increase 
in the initial investment and operation and mainte-
nance costs of using higher rated power PV panels,  
the overall income generated by the HRES using 
higher rated panels would also increase. It became 
clear that using wind turbines would not be a feasi-
ble option, in the Durban area, which, unlike many 

locations, has lower wind speed during winter than 
summer. Consequently, the solar and wind combi-
nation is unable to fully achieve its expected com-
plementary characteristics. Moreover, using BS is 
only cost-effective after eight years for the systems 
using the 200W and 100W PV panels, and after nine 
years for the systems using 50W PV panels. This 
means that for shorter system lifespans, it is more 
cost-effective to dump any excess power that is pro-
duced than to store it.  
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