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Abstract

The unsteady and intermittent feature (mainly due to atmospheric mechanisms and diurnal cycles) of
solar energy resource is often a stumbling block, due to its unpredictable nature, to receiving high-
intensity levels of solar radiation at ground level. Hence, there has been a growing demand for accurate
solar irradiance forecasts that properly explain the mixture of deterministic and stochastic characteristic
(which may be linear or nonlinear) in which solar radiation presents itself on the earth’s surface. The
seasonal autoregressive integrated moving average (SARIMA) models are popular for accurately
modelling linearity, whilst the neural networks effectively capture the aspect of nonlinearity embedded in
solar radiation data at ground level. This comparative study couples sinusoidal predictors at specified
harmonic frequencies with SARIMA models, neural network autoregression (NNAR) models and the
hybrid (SARIMA-NNAR) models to form the respective harmonically coupled models, namely,
HCSARIMA models, HCNNAR models and HCSARIMA-NNAR models, with the sinusoidal predictor
function, SARIMA, and NNAR parts capturing the deterministic, linear and nonlinear components,
respectively. These models are used to forecast 10-minutely and 60-minutely averaged global horizontal
irradiance data series obtained from the RVD Richtersveld solar radiometric station in the Northern
Cape, South Africa. The forecasting accuracy of the three above-mentioned models is undertaken based
on the relative mean square error, mean absolute error and mean absolute percentage error. The
HCNNAR model and HCSARIMA-NNAR model gave more accurate forecasting results for 60-minutely
and 10-minutely data, respectively.
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Highlights

e HCSARIMA models were outperformed by both HCNNAR models and HCSARIMA-NNAR models
in the forecasting arena.

e HCNNAR models were most appropriate for forecasting larger time scales (i.e. 60-minutely).

e HCSARIMA-NNAR models were most appropriate for forecasting smaller time scales (ie. 10-
minutely).

e Models fitted on the January data series performed better than those fitted on the June data series.
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1. Introduction

Alongside a rapid and continuous decline in the
cost of clean energy harvesting systems (i.e. solar
panels and wind turbines), the cost of generating
solar power is also anticipated to decline by
more than 50% in the next seven years (Inter-
national Renewable Energy Agency, 2016).
Among renewable energy resources (e.g. water,
solar and wind), solar power is expected to have
the highest levels of unexplored potential for a
wide spectrum of applications, due to the
interminable nature and abundant availability of
sunlight (Suleiman and Adejumo, 2017; Reddy et
al, 2017). Hence, the integration of large volumes
of solar energy into electricity grids is constantly
increasing (Diagne et al, 2013). However, the
continuous varying nature of solar energy
resource (i.e. solar radiation), can pose a great
challenge to this integration, thereby com-
promising the reliability and stability of the
electricity grid (Chu et al, 2015). The varying and
intermittent feature (mainly due to atmospheric
mechanisms and diurnal cycles) of solar
radiation is often a stumbling block (due to its
unpredictable nature) to receiving high-intensity
levels of solar radiation on the ground level,
thereby lowering the levels of solar power being
harvested and penetrating the existing
electricity network (Lorenz et al, 2004; Chu et
al, 2015; Voyant et al, 2017). This further
complicates the process of forecasting solar
radiation and destabilises the efficiency and
effectiveness of the solar resource to penetrate
the electricity power grid (Chu et al, 2015).
Moreover, it leads to high voltage variations,
which compromise the quality of power
generated and distributed, as well as increase the
cost of generating power reserves (Voyant et al,
2017).

For maximum application in sizing and
designing solar energy harvesting instruments
(e.g. photovoltaic (PV) systems) or predicting the
prospective solar power farms or high
integration of solar power into the electrical
network and effective operation of the electricity
grid, solar irradiance must be well-defined and
be accompanied by accurate forecasts at various
time horizons (ranging from minutes to years)
(Martin et al, 2015; Pavlovski and Kostylev,
2011). At present, different solar forecasting
methodologies (e.g. time series, machine learn-
ing, artificial intelligence, etc) have been de-
veloped and applied at different forecasting
time-scales to meet the increasing demand for
more effective predictive ability for solar
radiation (Chu et al, 2015) (also see Martin et al,
2015; Chaturvedi and Isha, 2016; Reddy et al,
2017; Voyant et al, 2017, Voyant et al, 2011).

This study is, however, concerned with short-
term forecasting.

Among the time series-based forecasting
methods, the Box-Jenkins non-seasonal/sea-
sonal autoregressive integrated moving average
(S/ARIMA) model has been widely applied in
forecasting solar irradiance, because of its ability
to handle linearity, seasonality and the stochastic
component embedded in solar radiation data
(see Mukaram and Yusof, 2017; Ranganai and
Nzuza, 2015). On the other hand, artificial neural
networks (ANNs) from the family of artificial
intelligence (Chaturvedi & Isha, 2016; Voyant et
al, 2011) are known to be very flexible and
nonlinear, with the capacity to capture the
nonlinear characteristics inherent in solar radia-
tion data that cannot be properly explained by
traditional models (e.g. SARIMASs) (Mukaram and
Yusof, 2017; Zhang, 2003; Bozkurt et al, 2017).
However, no clear-cut conclusion has been
reached in determining which is the better model
- ANN or S/ARIMA (see Mukaram and Yusof,
2017; Zhang, 2003), due to the unpredictable
mixture of deterministic and stochastic (which
may be linear and nonlinear) components that
often characterises time series data in real-world
situations. Hence, Zhang (2003) proposed
blending ARIMAs and ANNs to form ARIMA-
ANN hybrid models to capture linear and
nonlinear characteristics often infused in the
time series data. Ranganai and Nzuza (2015)
proposed an even better modelling approach, of
capturing both the deterministic and stochastic
components through coupling sinusoidal
predictors at determined harmonic (Fourier)
frequencies with the SARIMA model to form the
HCSARIMA model. In this procedure, they first
impose sinusoidal predictors on the irradiance
data to capture the major seasonal component.
Thereafter, the SARIMA model was fitted on the
residuals to handle the stochastic component.
The HCSARIMA model was found to be
effective at reducing the forecasting error,
particularly when dealing with a longer horizon
(two days ahead). The study results showed that
the HCSARIMA model is superior to the
SARIMA model in forecasting global horizontal
irradiance (GHI) data recorded on the earth’s
surface. Motivated by these results, the current
study aims to determine whether the
HCSARIMA model has a competitive edge over
other potential harmonically coupled models,
specifically the harmonically coupled NNAR
(HCNNAR) model and SARIMA-NNAR
(HCSARIMA-NNAR) model, in terms of im-
proving the forecasting error. Thus, this study
intends to employ the above-mentioned har-
monically coupled models to effectively capture
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deterministic and stochastic com-ponents
embedded in the solar irradiance data, with the
sinusoidal predictor function, SARIMA and
NNAR parts capturing the deterministic, linear
and nonlinear components, respectively. To the
knowledge of the authors, there is very limited,
if any, work done on modelling and forecasting
South African GHI data using HCNNAR and
HCSARIMA-NNAR models. Researchers have
used different models, such as quantile reg-
ression averaging (QRA), non-linear multivariate
models, multilayer perceptron neural network
(MLPNN), radial basis function neural network
(RBFNN) and physical ap-proaches (see
Mpfumali, et al, 2019; Govinda-samy and Chetty,
2019; Zhandire, 2017; Kibirige, 2018).

The GHI data series modelled in this paper
covers the two months of January (summer) and
June (winter) 2017, collected from RVD
Richtersveld radiometric station, located at
28.56° South, 16.76° East about 30 km East with
140 m elevation, at Alexandra Bay, Northern
Cape province, South Africa. Each of the data
series is averaged at a 10-minutely and 60-
minutely time scale. The RVD Richtersveld
radiometric station is equipped with a Kipp &
Zonen radiometer that is attached to the
SOLYSIS tracker (Brooks et al, 2015). The
SOLYSIS tracker consists of CHP1 pyrhelio-
meters to measure direct normal irradiance
(DNI), and CMP11 pyranometers to measure
both GHI and diffuse solar irradiance (DHI).

The rest of the paper is organised as follows.
In Section 2, a brief overview of SARIMA
models is presented, while a summary of NNAR
models is given in Section 3. Section 4 presents
the periodogram analysis and shows how it can
be coupled with other models. In Section 5, a
harmonically coupled modelling is presented,
whilst in-sample diagnostics, as well as out-of-
sample diagnostics, are discussed in section 6.
Section 7 focuses on the description and analysis
of various data series and empirical results.
Discussion of the results and conclusions are
given in Section 8 and Section 9, respectively.

2. SARIMA models

SARIMA models belong to one of the most-
utilised forecasting techniques for analysing time
series data, probably because they offer great
flexibility and accurate forecasts (Zhang, 2003).
This technique uses a linear combination of
historical observations to accurately predict
future time series observations, and also per-
forms analysis on the univariate stochastic time
series (i.e. innovations). As such, stationarity (i.e.

mean, variance and covariance must remain
constant over time) is necessary for these models
to produce accurate forecasts (Khalek and Ali,
2015). SARIMA models combine three pro-
cesses: an autoregressive (AR) process,
integrated or differencing (I) to ensure data sta-
tionarity and remove seasonality, and a moving
average (MA) process. The general form of
SARIMA model is denoted by SARIMA
(p,d,q) x (P,D,Q), model, which is given by
Equation 1 (see Box et al, 1994; Hyndman and
Athanasopoulos, 2013; Box and Jenkins, 1976).

bp(B)YPp(BYVVS Yy = py + 0 (B*)0y(B)er, (1)

where y, is a constant; ¢,(B)=1-B¢, —
B%*¢p,—...—B?¢, (AR polynomial); 6,(B) =1—
B6, — B*6,—...—B16, (MA polynomial) ; p (order
of non-seasonal AR process); d (number of non-
seasonal differencing); q (order of non-seasonal

MA); ®,(B%) = 1 — BS®, — B¥®,~...—B?®, (sea-
sonal AR polynomial); 6,(B*)=1-B%6, —
B*6,—...—B%*10, (seasonal MA polynomial); P

(order of seasonal AR); D (number of seasonal
differencing); Q (order of seasonal MA), s
(seasonality); y, (time series or stochastic process
at time lag k); e, ~ N (0, 6?) (i.e. Independent and
identically distributed (IID) white noise process
with mean of zero and constant variance); V?
(seasonal difference); V¢ (non-seasonal differ-
ence); and B (back-shift operator). The roots of
the polynomials 8(B) = 0 and ¢(B) = 0 must lie
outside the unit circle (Wei, 1990). The back-shift
operator (B) is defined as a linear operator that
shifts the time index one period back such that:

By = Vi1 (2)
and
B™yr = Ykem- )

The order of differencing (d) ensures data
stationarity is defined as:

v =(1-B)* (4)

such that a stationary time series {x,} that has
been differenced d times is given by:

X = dek =(1- B)d}’k = Ok _}’k—1)d~ )

Seasonally differenced time series {y,} is
given by:

Py =k — )’k—s)D~ (6)
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that 0<d <2

(1) KPSS test is used to determine the number of differences d such

(2) After differencing the series d times the values of p and q are determined by minimising
the values of AlCc. The algorithm use a stepwise approach to fransverse the model space.

a constant

(i) Four initial models are fitted: ARIMA(0,d,0), ARIMA(2,d,2), ARIMA(1,d,0), ARIMA(0,d,1). A
constant is included unless d=2. If d<1, an additional model is also fitted: ARIMA(0,d,0)without

(i) On the basis of smallest AlCe the best model fitted in step (i) is set o be the “current model”.

becomes the new current model results

Variations on the current model are considered:

+ vary p and/or q from the current model by *1;

. include/exclude c from the current model.

The best model considered so far (either the current model or one of these variations)

Repeat Step 2(iii) until no lower AlCc can be found.

Figure 1: The Hyndman-Khandakar algorithm process for automatic identification
of the ARIMA model (Hyndman and Athanasopoulos, 2013).

The Hyndman-Khandakar algorithm is
applied using the auto.arima function in R to
search for an optional ARIMA model. To find
the most appropriate ARIMA model, the
algorithm applies the maximum likelihood
estimation (MLE), the Kwiatkowski-Phillips-
Schmidt-Shin (KPSS) test for the unit root
testing, and the corrected Akaike Information
Criterion (AIC) (i.e. AIC with correction for small
sample sizes) (Hyndman and Athanasopoulos,
2013). The corrected AIC (or AICc) addresses the
potential of model over-fitting. For a large
sample size, AICc will ultimately converge to
AIC. The Hyndman-Khandakar algorithm for
automatic identification of the ARIMA model is
diagrammatically illustrated in Figure 1.

When handling seasonal data, the auto.arima
function uses ndiffs function to calculate the
appropriate number of first order differences (d).
Similarly, D the number of seasonal differencing,
is determined using nsdiffs function. The rest of
the seasonal parameters P and Q are identified
by minimising AlCc.

3. NNAR analysis

Artificial neural networks (ANNSs) are nonlinear
and nonparametric models that are often
applied in machine learning (Zhang, 2003; Sena
and Nagwani, 2016). These methods provide the
best results when predicting functions based on
a larger sample of the training set (Sena and
Nagwani, 2016). According to Zhang (2003),

ANNs have several advantages over linear
models (eg. SARIMA models) in time series
forecasting, because they are data-driven and
have self-adaptive techniques. As such they
rarely require prior theoretical model assump-
tions about the data under investigation. ANNs
are also able to learn, memorise and recognise
patterns without any temporal relations in the
data, and model a phenomenon to any desired
accuracy level (Pretorius and Sibanda, 2012;
Fonseca et al, 2011).

ANNs are machine-learning techniques that
are biologically inspired by the human neural
processing system (Sena and Nagwani, 2016;
Pretorius and Sibanda, 2012). These techniques
consist of algorithms (e.g. back-propagation
algorithm) that mimic the structure of the
human brain to process data using a network of
highly connected (through weights) nodes or
neurons (Pretorius and Sibanda, 2012; Baridam
and Irozuru, 2012). The weights lie within the
values of —1 and +1. Inhibitory (negative) weight
decreases the total input value into a neuron,
while excitatory (positive) weight increases the
total input into a neuron. The network is
interlinked in the distinguishable layer of the
topology of neurons. The network constitutes
three main layers of neurons, namely, the input
layer (which is the first layer in the network), the
hidden layer (middle layer of the network), and
the output layer (the final layer of the network)
(Pretorius and Sibanda, 2012; Fonseca et al, 2011,
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Baridam and Irozuru, 2012).

Training of the network using a larger
volume of training data sets plays a significant
role in implementing successful ANNs. With the
aid of the back-propagation algorithm, ANNs
learn to adjust weights associated with each
connection within the network during the
training stage (Hyndman and Athanasopoulos,
2013). The rationale behind the training is to find
a set of weights such that the difference between
the calculated output by the ANN model and the
known targeted value is as small as possible
(Hyndman and Athanasopoulos, 2013; Pretorius
and Sibanda, 2012).

The feed-forward neural networks present
the most basic and simple form of ANN
architectures, where the signal is only able to
flow in a forward direction, from the input
neurons, through the hidden neurons to the
output neurons (Sena and Nagwani, 2016; Pre-
torius and Sibanda, 2012; Fonseca et al, 2011,
Baridam and Irozuru, 2012). There are two types
of feed-forward neural networks, namely single-
layer perceptron network and MLPNN
(Mukaram and Yusof, 2017; Pretorius and
Sibanda, 2012). The single-layer feed-forward
network (which is the simplest network that
contains no hidden layers and is equivalent to
linear regressions (Hyndman and Athanaso-
poulos, 2013) consists of inputs, single-layer,
output, and a bias term. MLPNN feed-forward
networks consist of at least three layers
consisting of a single input layer and an output
layer with at least one hidden layer depending
on the problem under investigation (Mukaram
and Yusof, 2017; Hyndman and Athanasopoulos,
2013; Pretorius and Sibanda, 2012).

NNAR model is a type of MLPNN feed-
forward network with one hidden layer and
logistic sigmoid as an activation function to

Input layer
Yea

Hidden layer

minimise the overall impact of extreme values
on the predicted final output (Hyndman and
Athanasopoulos, 2013; Khalek & Ali, 2015).
Contrary to linear autoregression models such as
SARIMA models, the NNAR model utilises
historically lagged data series as inputs into the
neural network for forecasting and has no
restrictions on the model parameters to ensure
stationarity (Hyndman and Athanasopoulos,
2013). This feed-forward technique involves a
linear combination function (of the inputs) and
nonlinear sigmoid activation function (usually a
logistic function) (Khalek & Ali, 2015; Hyndman
and Athanasopoulos, 2013).

Inputs into the network are combined
linearly and the output is passed through the
sigmoid function (Khalek & Ali, 2015; Fonseca et
al, 2011). Thus, the total input into the j** neuron
is the weighted sum of all the outputs from all
other earlier neurons connected to it and is
calculated as follows:

V; =Xk yiwy + by, (7)

where w;; denotes the weight connecting neuron
i to neuron j, y, is the output of neuron i, b; is
the threshold coefficient for neuron j, m is the
number of neurons in the hidden layers, and
f (which modifies the input V; in the hidden
layer) is a nonlinear logistic sigmoid function
such that (Hyndman and Athanasopoulos, 2013):

f) =—= (8)

1+e v’

If the input value into a neuron is above the
threshold b5, (ie. the standardised input to a
neuron in the absence of any other inputs) the
neuron will fire, otherwise, it will not fire (i.e.
reject the value).

Output layer

Figure 2: NNAR (p, P, k),, model (Khalek & Ali, 2015).
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When applied on non-seasonal time series
data to forecast output y,, the NNAR model is
denoted by NNAR (p, k), with p being the number
of lagged inputs and k the number of neurons in
the hidden layers (Hyndman and Athanas-
opoulos, 2013). For the application on seasonal
time series data, the NNAR model is denoted by
the notation NNAR (p,P,k),,, where P is the
seasonal AR order, {yi_1, Yi—ar--or Yeems Yeeom
Ye—pm} are the lagged values, k is the number of
neurons in the hidden layer, and seasonality at
multiples of m (see Figure 2). For example,
NNAR (4,1,14)1; has (ye_1,¥e-2 Yoz Veear Ye-14}
inputs with 14 neurons in the hidden layers and
seasonality at multiples of 12. Without the
existence of the hidden layer, the NNAR model
is given by NNAR (p, P,0),,, which is analogous
to ARIMA (p,0,0)(P,0,0),, (Hyndman and
Athanasopoulos, 2013). Since the data at RVD
Richtersveld radiometric solar station are ex-
pected to have some aspects of seasonality, the
function nnetar in R program will be used to
automatically fit the best NNAR (p, P, k),, model.
This function selects the autoregressive seasonal
parameter, P=1 by default, with the non-
seasonal autoregressive parameter or number of
lagged outputs p being extracted from the fitted
optimal linear SARIMA model. If k is not
selected, it can be calculated by Equation 9:

k=(@+P+1)27L 9)

When it comes to forecasting using the
NNAR model, the network is applied iteratively.
For a step-ahead forecast, the NNAR model uses
available historical observations as inputs into
the network. For two-steps-ahead forecasts, the
NNAR model combines both the available
previous observations and computed one-step
head forecasts as inputs into the network (Hynd-
man and Athanasopoulos, 2013). The process
continues until all required forecasts are
computed.

4. Periodogram analysis

When dealing with cyclic data, periodicity plays
a significant role in unpacking the inherent
characteristics of the data. Periodogram analysis
is utilised in solar irradiance forecasting to
explain the aspect of diurnal cycles (Ranganai
and Nzuza, 2015). The periodogram, which is a
well-known and widely applied fundamental
nonparametric tool for detecting periodicities, is
a spectrum estimation instrument that utilizes
the fast Fourier transform (FFT). Statistically
significant periodogram ordinates identify dom-
inant frequencies or periods, which helps to
determine dominant cyclic behaviour in the time

series data (Yarmohammadi, 2011). This
frequency domain technique is also used in
statistics to build statistical inference for spectral
density function because its statistical char-
acteristics are known (Yarmohammadi, 2011).
For a real-valued time series {y,} of length n, the
periodogram I,,(9,) is given by:

() = —|Zpy yee W29 € [0,m].  (10)

The periodogram can be calculated for a
discrete data set at harmonic frequencies:

9, =2, p=012,..,% (11)

Suppose that a real-valued time series {y,}
contains a periodic sinusoidal component with a
known wavelength given by (see Ranganai and

Nzuza, 2015):
Vi = i + Acos(9,k + @) + ey, 12)

where 9 (measured in radians is such that =«
radians=180°) is the frequency of the sinusoidal
variation, A is the amplitude of the variation, ¢
is the phase and e, is Gaussian white noise
process with zero mean and unit variance.
Frequency, denoted by f = ;9—p is defined as the
number of cycles per unit fime and is used to
explain the results of the data process. The
period or wavelength is calculated as a function
of the frequency and is given by = or 129—”. The
mathematical expression presented in Equiation
12 can equivalently be written as Equation 13

(see Ranganai and Nzuza, 2015):
Vi = acos(O,k) + Bsin(I,k) + ey, (13)

where a = Asin(¢), f = Acos(¢) and w, =0. In
practice, the sinusoidal predictor function of the
times series {y,} may contain cyclical variations
at different time scales (e.g. daily, weekly, etc.).
To accommodate such instances Equation 13 is
generalized as follows (see Ranganai and Nzuza,

2015; Yarmohammadi, 2011):
Vi = Xje1 ajcos(9;k) + bjsin(9;k) + ey, (14)

where a; = Ajcos(¢;) and b; = —A;sin(¢)).

The existence of multiple periodic com-
ponents or sharp peaks in the periodogram does
not necessarily imply that each of these peaks
corresponds to an actual sinusoidal component
of the series. If a time series has a significant
sinusoidal component with harmonic frequency
9y, the periodogram will have the highest peak
at 9,. We can use Equation 14 to test the
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hypothesis whether the parameters aand b are
zero at Yy, ie. Ho:ay=b, =0vsHa:a, # 00r b, #
0 using Fisher’s exact test. This assists in deter-
mining whether the value of the periodogram’s
peak is greater than that which is likely to rise
in a model without true or actual sinusoidal
components (i.e. white noise series) (Yar-
mohammadi, 2011; Liew et al., 2009). Thus, the
test determines whether a peak in the
periodogram is significant or not. The standard
procedure for applying periodogram analysis
requires that one plots periodogram ordinates at
2np n . .
O ==—=,p=012....7 harmonic frequencies
first, and then applzies Fisher’'s exact test to
detect the magnitude of the largest peak using
the g- test statistic presented in Equation 15
(Yarmohammadi, 2011):

_ ma:!x{l(ﬁp)}. (15)

$2_,1(9p)

For any given a level of significance we can
use Equation 15 to find the critical value g,, such
that P(g > g,) = a. If g > g,, the null hypothesis
is rejected and the conclusion is reached that the
signal {y,} has a specified sinusoidal or periodic
component (Yarmohammadi, 2011; Wei, 1990).
Alternatively, if the p-value given by P(g > g,) is
less than a, we reject the null hypothesis and
conclude that the time series is not white noise
(see Ahdesmaki et al, 2007; Liew et al, 2009).
Thus, the time series exhibits some periodic
expression pattern (i.e. the maximum peak in the

periodogram is significant). In this study, we use
the fisher.g.test function in GeneCycle package in
the R program to determine the significance of
any periodogram ordinate.

5. Harmonically coupled modelling
It is assumed that the GHI data series of interest
originates from a mixture of deterministic and
stochastic process given by Equation 16:

Ik = Dy + Sy, (16)

where §, denotes the predicted GHI data series,
D, is the deterministic component and S, is the
stochastic component. Harmonically coupled
modelling consists of two main steps (Ranganai
and Nzuza, 2015). The first step is where the data
is modelled by the sinusoidal predictor function
at the determined harmonic frequencies to
capture the deterministic component. There-
after, the sequence of residuals data (which could
not be properly explained or captured by the
sinusoidal predictors) are used as input into the
SARIMA, NNAR and SARIMA-NNAR models
to capture the stochastic component of the data.
The final predicted value by the harmonically
coupled model is the summation of the predicted
value by the sinusoidal predictor function and
the predicted value by either the SARIMA model
/NNAR model/ SARIMA-NNAR model (see
Figure 3).

For instance, we can derive HCNNAR
models in the following two steps. Assume that

Time series of solarirradiance
data.

HCSARIMA model / HCNNAR model / HCSARIMA-NNAR
model (results combination)

r

|dentify the most dominant
frequency and largest ordinate
in the data series.

\_l

Fit the sinusoidal predictors at
the determined harmonic

A

Harmonically|
couple each
model

frequency.

Forecast using Sinusoidal predictor
function (Deterministic
component/periodicities)

Residual errors (Stochastic sequence
of residual errors)

Forecast using each model:

SARIMA model/ NNAR model/
SARIMA-NNAR mocdlel

(Stochastic component)

Fit each of the 3 models: SARIMA
model/ NNAR model/ SARIMA-
NNAR medel

P

Figure 3: Diagrammatic illustration of harmonically coupling sinusoidal hybrid model.
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GHI data series {y,} is a mixture of deterministic
component (D,) and stochastic component (S)
such that:

Vi = Dy + S 17)
and
Ve =i+ e (18)

Step 1: Supposing e, denotes the residual at time
lag k, then

€ =Yk — ﬁk, (19)

where D, is the forecasted value at time k using
sinusoidal predictor model.

Step 2: Vector r=(ey_q,€xz-...,€xm) Of the
residual errors obtained in step 1 are used as
input data to the NNAR model with m nodes.
After applying the NNAR model to the residual
vector we obtain the following result (see Zhang,

2003):

ex = f(r) = fex—1,€x—2s---r €k—m) + M = S, (20)

where f denotes the logistic sigmoid function
and 7, is stochastic error. Thus, the HCNNAR
model is a sum of the forecasted result by the
sinusoidal predictor model and the NNAR
model:

P = Dy + S (21)

The HCSARIMA model is obtained in a
similar fashion, by first injecting the residual
error terms from the fitted sinusoidal predictor
model into the SARIMA model (to capture the
stochastic component). Thereafter, we combine
the forecasting results by the sinusoidal pre-
dictor and SARIMA models to form the
HCSARIMA model.

For the HCSARIMA-NNAR model, we first
fit the sinusoidal predictor function on the GHI
data series to capture the deterministic com-
ponent. Thereafter; we inject the residual error
terms from the fitted sinusoidal predictor
function into SARIMA-NNAR model. In this
way, the SARIMA model captures the linear
part, while the NNAR model captures the
nonlinear part (using the residual error terms
generated from fitting SARIMA model as input
into the neural network) of the stochastic
component. Thereafter, we combine the fore-
casting results by the sinusoidal predictor model

and SARIMA-NNAR model
HCSARIMA-NNAR model.

to form the

6. Model diagnostics
Model diagnostics employed comprise in-sample
and out-of-sample diagnostics.

6.1 In-sample diagnostics

Model selection is based on the lowest values of
the Bayesian information criterion (BIC), Akaike
information criterion (AIC) and its corrected
version AIC.. AIC, AIC, and BIC are respectively
calculated by Equations 22-24 (Akaike, 1983;
Hyndman and Athanasopoulos, 2013; Schwarz,
1978):

AIC = In(SSE/n) +=, (22)
AIC, = AlC + 222K, (23)
BIC = In(SSE/n) + “=, (24)

where n is the sample size; SSE is the sum of
squares of the error terms; In is the natural
logarithm; and k is the number of estimable
parameter.

6.2 Out-of-sample diagnostics

Prediction performance of all fitted models is
assessed and compared using the well-known
standard error metrics: mean absolute error
(MAE) (in Watts per square metre (Wm?)), root
mean square error (RMSE) (in Wm?), and mean
absolute percentage error (MAPE) (in %). Smaller
values of these performance metrics imply high
accuracy forecasting ability of the model while
high values are associated with poor forecasting
ability. The error terms are denoted by e, = (v, —
v2), where k=1,..,n; y, and y; are the actual
and predicted solar irradiance values at time k
respectively (Zhang et al, 2013). Then, the
forecasting accuracy measures are given by
Equations 25-27:

MAE = Y1 lexl, (25)
RMSE = |7, (efl)z, (26)
MAPE = ('Ty’f) x 100%. (27)

7. Empirical results and discussion

7.1 Data source and exploratory data analysis
The GHI data series used in this study can be
downloaded from the Southern African
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Universities Radiometric Network (SAURAN)
website (http://www.sauran.net) (Brooks et al,
2015). All data records from SAURAN’s RVD
Richtersveld radiometric station are recorded by
a sensor at sub-6 seconds intervals data readings
and collected based on South African Standard
Time (SAST) (Brooks et al, 2015). The 10-
minutely averaged data used in this study were
aggregated using the original one-minutely
averaged data (see Table 1). The 60-minutely
averaged data were readily available from the
SAURAN website, but the same exercise of
averaging was repeated to ascertain data quality
(see Table 2).

January 60-minutely averaged entries span
from 06:00 am to 08:00 pm while 10-minutely
averaged observations spans from 06:00 am to
08:10 pm. June 60-minutely averaged data spans
from 07:00 am to 6:00 pm while 10-minutely

averaged observations span from 07:30 am to
1810 pm. Since summer months have hotter
days and winter months have colder ones, larger
values of irradiance are recorded for January,
whereas lower values are recorded for June (see
Figures 4 and 5). The time spans for both data
series were deliberately chosen to accommodate
as many daylight hours as possible while
avoiding a high percentage of night and early
morning zero values.

To evaluate the performance of the models,
data were split into a training set (for model
selection) and a testing set (to evaluate
forecasting performance). The training set for
the summer season covers the in-sample period
of the Olst to 13th January 2017 and that of
winter season covers the period of the 02nd to
13th June 2017. The testing set, on the other
hand, constitutes two days out-of-sample period

Table 1: Details of 10-minutely averaged GHI data series.

Month Sample size Duration Cycle length Training set Testing set
January 2017 1260 15 days 84 1-13 (13 days) 14-15 (2 days)
June 2017 882 14 days 63 2-13 (12 days) 14-15 (2 days)

Table 2: Details of 60-minutely averaged GHI data series.

Month Sample size Duration Cycle length Training set Testing set
January 2017 210 15 days 14 1-13 (13 days) 14-15 (2 days)
June 2017 168 14 days 12 2-13 (12 days) 14-15 (2 days)
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Figure 4: The 60-minutely (top) and 10-minutely (bottom) averaged time series plot of GHI
series for the period of the 15 to 15th of January 2017.
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Figure 5: The 60-minutely (top) and 10-minutely (bottom) averaged time series plot of
GHI series for the period of the 2nd to 15th of June 2017.

from the 14th to 15th for each of the two
sampled months (see Table 1 and 2). The lower
and upper limits time intervals for each day were
kept the same to ensure stability in data
modelling and forecasting throughout the anal-
ysis.

With affirmation from periodogram analysis,
the seasonality on the 10-minutely data series
was identified to be 84 and 63 data of 10 minutes
per day for summer and winter periods
respectively. In 60-minutely data, seasonal
cycles were found to have a length of 12 hours
and 14 hours per day for January and June,
respectively. It was further observed that sum-
mer seasonal cycles are longer than winter ones,
which is attributable to summer having longer
days than winter.

Table 3 shows the summary statistics for the
January and June 2017 GHI data series. The
minimum GHI value for January 10-minutely
and 60-minutely time scales are 10.2 Wm?and
0.3 Wm? respectively. On the other hand, the
June data series has a minimum GHI value of
0.0 Wm? for each of the time scales of interest.
January 10-minutely (1136.3 Wm? and 60-
minutely (1125.8 Wm?) time scales recorded the
highest GHI values as compared to June 10-
minutely (7175 Wm?) and 60-minutely (635.51
Wm-2) time scales. The kurtosis for both January
and June GHI data series is positive and it lies
within the interval 1.5-1.6. This implies that both
the January and June data series do not

perfectly fit the normal distribution. Hence, the
distributions of the four data series have heavier
tails than the normal distribution. Except for the
June 60-minutely time scale (which is positively
skewed), the rest of the time scales have
negatively skewed distributions. The means and
the medians for all the time scales under
investigation are unequal with p-values equals
0.0, which affirms that their distributions are not
normally distributed.

7.2 Periodogram analysis

Figure 6 shows the diagrammatic represent-
ation of the largest ordinate at periods 14 and
84 for 60-minutely and 10-minutely averaged
January data series, respectively. This cor-
responds to the harmonic frequency of 2r/14 for
a 60-minutely time scale and 2m/84 for a 10-
minutely time scale. Fisher’s g-test statistic for
the 60-minutely is equal to 0.886 while that of
the 10-minutely data series is equal to 0.878.
Both these statistics are significant (since p-
value=0.00) at 1% level of significance, indicating
that the largest ordinates are indeed highly
significant (see Table 4).

Figure 7 shows the diagrammatic represent-
ation for the largest ordinate at periods 12 and
63 for 60-minutely and 10-minutely June data
series, respectively. This equates to the harmonic
frequencies 2m/12 and 2m/63 for the 60-
minutely and the 10-minutely time scale,
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respectively. Fisher’s g-test statistic for the 60- At a 1% significance level, the ordinates are
minutely data series is equal to 0.845 while that  highly significant (since p-value=0.00) for both
of the 10-minutely data series is equal to 0.760.  time scales (see Table 5).

Table 3: Summary statistics for the January and June GHI data series.

Min 1stQu  Median Mean  3rd Qu Max Skewness  Kurtosis JBera test
(P-value)
(60Min) 102 2288 693.2 591.3 985.7 11258 -0.134 1516 19.888(0.0)
an(l0Min) 0.3 1939 621.0 591.3 9760 11363 -0.137 1507 120.8(0.0)
(60Min) 0.00 6913 26076 28522 49876 63551 0.110 1525 15.568(0.0)

Jun(10Min 0.00 1297 334.8 3259 5257 7175 -0.061 1583 74.324(0.0)
Table 4: Periodogram analysis for January 2017 data series and Fisher’s test for the
significance of the largest ordinates.

Scale Period Dominant Largest Fisher’s g-test ~ Fisher g-test
frequency ordinate statistic (P-value)

60-minutely 14 0.071 13724794 0.886 0.000
10-minutely 84 0.012 83692103 0.878 0.000
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Figure 6: Periodogram plot of the 60-minutely (top) and 10-minutely (bottom)
averaged GHI series for the period of the 01st to 15th January 2017.
Table 5: Periodogram analysis for June 2017 data series and Fisher’s test for
the significance of the largest ordinates.
Scale Period Dominant Largest Fisher’s g-test  Fisher g-test
frequency ordinate Statistic (P-value)

60-minutely 12 0.083 3397517 0.845 0.000
10-minutely 63 0.016 14650115 0.760 0.000
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Figure 7: Periodogram plot of the 60-minutely (top) and 10-minutely (bottom)
averaged GHI series for the period of the 02nd to 15th June 2017.

7.3 Model building and evaluation

All data modelling and forecasting in this study
were implemented using the R program. Sinu-
soidal predictor(s) were fitted using the likelihood
function, such that the parameters with p-
value<0.05 were deemed to be significant. The
auto.arima function (from the forecast package)
was used to automatically select the best
SARIMA model, as illustrated in Figure 1. Para-
meters whose confidence band excluded zero
were deemed to be significant (see Appendix A).
Using the nnetar function (from the forecast
package), the learning sample was preselected to
be 2000, to ensure model robustness (Hyndman
and Athanasopoulos, 2013). The four best-
performing models were validated by examining
the autocorrelation structure of the residuals
using the Ljung Box test (p-value>0.05) and
residual plot (mean-variance around zero) (see
Appendix B).

The AIC and BIC were utilised to identify the
most appropriate model amongst those fitted. In
model validation, two-days-ahead forecasts were
used to compare the forecasting abilities of each
of the models fitted, based on performance
metrics (ie. MAE, RSME and MAPE). Smaller
values of the performance metrics implied a
higher accuracy level.

The prediction intervals of the forecasts from

the best performing models in each of the time
scales of interest were used as a measure of
uncertainty in the forecasts. The confidence
interval of the forecast is the band or range that
is most likely to contain the mean response for
the actual values of the independent variable
(e.g. GHI). Prediction interval at 100(1-o)% for
the value I steps ahead can be calculated by

N[

where & is the estimate of the standard deviation
of the residual errors e,(l) (see (Hyndman and
Athanasopoulos, 2013)). The upper and lower
limits of the confidence interval provide the
optimistic and pessimistic forecasts of the
independent variable.

7.3.1 Model building and selection

In neural networks, there is no specific
methodology for determining the best design of
the network, so the AIC and BIC results
presented in Tables 6 and 7 were only calculated
for the final harmonically coupled models, with
the aid of the likelihood function in R software.
In all the fitted models that follow, the series {W,}
denotes the non-stationary residuals (Ranganai
and Nzuza, 2015).
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7.3.1.1 Model building

Models fitted on the 60-minutely averaged
January GHI data series
e Model A1 (HCSARIMA-NNAR):

Yi = 1+ acos (j—Zk) + Bsin (i—Zk) +(1+¢.B+

$2B*¢3B* + ¢,B*)
(1+6,B)W, + e, + NNAR(1,1,2) 14 (29)

e Model A2 (HCSARIMA):
Vi =u+acos(j—:k)+,8$in(i—z:k) +(1+¢,B+

¢,B*¢3B* + ¢,B*)
1+ 6,B)W, + ¢, (30)

e Model A3 (HCNNAR):
Vi =u+acos(i—:k)+ﬂsin(i—7:k) +e, +
NNAR(8,4) (31)

Models fitted on the 10-minutely averaged
January GHI data series
e Model A4 (HCSARIMA-NNAR):

Y = U+ acos (;—:k) + Bsin (z—Zk) +(1+¢,B+
¢,BH)(1 + 0, B)W, +ey + NNAR(27,1,4)[84] (32)

e Model A5 (HCSARIMA):
Y = U+ acos (z—':k) + fsin (;—Zk) +(1+¢.B+
¢,B*)(1 + 6,BYW,, + ¢ (33)

e Model A6 (HCNNAR):
Y = U+ acos (z—z k) + fsin (;—Zk) +

NNAR(28,14) + e, (34)

Models fitted on the 60-minutely averaged June
GHI data series
e Model Bl (HCSARIMA-NNAR):

Y = U+ acos (i—z k) + Bsin (j—:k) +(1+¢,B)A+
6,B + 6,BO)W, + NNAR(1,1,2) 15 + e (35)

e Model B2 (HCSARIMA):
Ve = U+ acos (i—’;k) + B sin (i—’;k) +(1+¢,B)A+
613 + ezBZ)Wk + € (36)

e Model B3 (HCNNAR):
Vi =u+acos(i—§k)+ﬁsin(i—’21k) + e +
NNAR(3,2) (37)

Models fitted on the 10-minutely averaged June
GHI data series

e Model B4 (HCSARIMA-NNAR):

Y = U+ acos (E—Zk) + Bsin (E—Zk) +(1+¢,B+
¢,B*)(1 + 6,B + 6,BH )W, +

e, tNNAR(22,1,12) (63 (38)

e Model B5 (HCSARIMA):
Vi = u+acos(2—§k) +ﬁsin(2—§k) +(1+¢,B+
$2B5)(1 + 6,B + 0,B)W,, +ey (39)

e Model B6 (HCNNAR):

Vi =u+acos(2—§k)+ﬁsin(2—§k)+ek+
NNAR(23,12) (40)
7.3.1.2 Comparison of the in-sample diagnostics
of the models

For 60-minutely averaged January data set,
Model A3 was superior over Model A2 and
Model Al, since it had the least values of both
AIC and BIC. When compared to Model A5 and
Model A6, Model A4 was superior (ie. least
values of AIC and BIC) at modelling the 10-
minutely averaged January data (see Table 6).
Model B3 was found to be a better (i.e. least
values AIC and BIC) model than Model B2 and
Model Bl at modelling the 60-minutely data
series for June. The 10-minutely data series for
June can be modelled better by Model B4 as it
has the least values of AIC and BIC when
compared to Model B5 and Model B6 (see Table
7).

7.3.2 Model evaluation

7.3.2.1 Comparison of the forecasting
performance of the models

Table 8 presents the summary statistics of the
residuals of the models fitted on the January
2017 GHI data series. The least values of
standard deviation indicate a small variation
between the forecasts and the actual GHI values.
Residuals from Model A3 and Model A4 have
the least standard deviation values of 43.785 and
14.811 for the 60-minutely and 10-minutely time
scales, respectively. Thus, Model A3 and Model
A4 are best at modelling the underlying
characteristics of the January GHI 2017 data
series. The positive skewness values of 0.829 and
1918 for Model A3 and Model A4, respectively,
reflect a large number of positive errors,
indicating the underestimation of the January
GHI data series.

Table 9 presents the two days ahead fore-
casting performance of the models fitted on the
60-minutely and 10-minutely January 2017 GHI
data series. For a 60-minutely time scale, the
results show that Model A3 outperforms both
Model A2 and Model Al across all error mea-
sures. For a 10-minutely averaged time scale,
Model A4 consistently outperformed both Model
A5 and Model A6 across all error measures. The
overall results show that Model A3 and Model
A4 yield the best results when forecasting 60-
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minutely and 10-minutely data series, re-
spectively.

Table 10 presents the summary statistics of
the residuals of the models fitted on the June
2017 GHI data series. The least values of
standard deviation indicate that there is a small
variation between the predicted and actual
values. The least values of standard deviation
were recorded for the residuals from Model B3

and Model B4 with 46.039 and 12.449 for the
60-minutely and 10-minutely time scales,
respectively. These values indicate that Model
B3 and Model B4 are best at modelling the
underlying characteristics of the June 2017 GHI
data series. Furthermore, the negative skewness
values for Model B3 and Model B4 reflect a large
number of negative errors, which indicate the
overestimation of the GHI values.

Table 6: In-sample diagnostics for the fitted models on January 2017 GHI data series.

60-Minutely 10-Minutely
Metric Model Al Model A2 Model A3 Model A4 Model A5 Model A6
AIC 2372.870 2412.042 2182.100 10111310 12890980  11848.960
BIC 2389.606 2425431 2195488 10137.010 12911530 11869.520

Table 7: In-sample diagnostics for the fitted models on June 2017 GHI data series.

60-Minutely 10-Minutely
Metric Model Bl Model B2 Model B3 Model B4 Model B5 Model B6
AIC 1785532 1834.797 1769.455 6600.627 9215.311 7583.753
BIC 1951.651 1847293 1781.951 6624.538 9234.440 7602.882

Table 8: Summary statistics of the residuals of the models fitted on January 2017 GHI data series.

60-minutely 10-minutely
Statistic Model Al Model A2 Model A3 Model A4 Model A5 Model A6
Standard 68679 74246 43785 14,811 40195 26615
Mean 0.5256 0.244 2.641 0.057 -0.0156 2403
Median 05778 11819 1435 -0.108 -0.5615 0.069
Min. -262.571 -279.075 -188.526 -118.82 -358431 -114.153
1st quartile -30.803 -31.351 -15.441 -3.071 -7.4150 -2.593
3rd quartile 25.338 27.862 15.876 2748 6.668 2939
Max. 308.598 301.082 189.235 267.109 424.658 315.339
Skewness 0.364 0.077 0.829 5392 19179 4.859
Kurtosis 7.811 7.005 9.360 109.223 40.785 41462

Table 9: Forecasting accuracy of the fitted models on January 2017 GHI data series.

60-minutely 10-minutely
Metric Model Al Model A2 Model A3 Model A4 Model A5 Model A6
RMSE 28.831 43973 21.298 6.603 12412 8.048
MAE 20.009 32.297 15.716 3.364 8445 3.843
MAPE 13481 22565 9.643 5435 8.805 20.281
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Table 10: Summary statistics of the residuals of the models fitted on June 2017 GHI data series.

60-minutely 10-minutely
Statistic Model Bl Model B2 Model B3 Model B4 Model B5 Model B6
Standard 51.429 55.755 46.039 12.449 44.755 17.847
Mean 0.799 0103 0.3262 0.3591 0141 1187
Median 6.332 4.782 47757 0.217 2.739 0.212
Min. -269.285 -287.855 -218.0248 -105.879 -266.381 -110.710
1st quartile -15.286 -14.939 -13.7189 -3.999 -12.026 -3.775
3rd quartile 23.891 22.886 22.000 5.086 12.332 4.685
Max. 164.525 165515 124.214 65.729 269.627 100.569
Skewness -1.569 -1.829 -1.520 -1.014 -0.500 0.891
Kurtosis 10.711 10.969 9.605 15.692 14.105 13.505

Table 11: Forecasting accuracy of the fitted models on June 2017 GHI data series.

60-minutely 10-minutely
Metric Model Bl Model B2 Model B3 Model B4 Model B5 Model B6
RMSE 53558 55.372 48161 11.303 27573 16.328
MAE 39.693 40.567 40.059 6.77 18.798 8.617
MAPE 98446 397.165 34.062 10.895 13.752 8725

Table 11 presents the forecasting results of
the models fitted on the 60-minutely and 10-
minutely June 2017 GHI data series. For the 60-
minutely averaged time scale, Model B3
outperforms Model B2 and Model Bl across all
error measures. However, Model Bl provides
better results than Model B2 across all per-
formance metrics. On the other hand, Model B4
outperforms Model B5 across all error measures
in predicting the 10-minutely time scale data.
Although Model B4 is superior to Model B6 in
terms of MAE and RMSE, Model B6 has a
competitive edge over Model B4 in terms of
MAPE. For the same time scale, Model B6
outperforms Model B5 across all error measures.
The overall results show that Model B3 and
Model B4 produced the best results when
forecasting 60-minutely and 10-minutely data
series, respectively.

Figures 8 and 9 graphically compare the two
days ahead forecasts (dashed red line) against

actual GHI data (blue line) from all the fitted
models on the GHI data series for January and
June 2017. The forecasting results showed that
the predicted values fit the January 2017 data
better than the June 2017 data.

7.3.2.2 Comparison of the prediction intervals
Figures 10 and 11 present the 95% prediction
intervals of the forecasts from the two best
models for each of the months and their
respective time scales. The upper and lower
limits of the prediction interval provides the
optimistic and pessimistic forecasts of the GHI
data. Amongst the best models (i.e. Model A3
and Model B3) for forecasting 60-minutely time
scale data, the confidence bands for Model A3
were narrower than Model B3. Similarly, the
prediction intervals for the best models (i.e.
Model A4 and Model B4) for modelling 10-
minutely time scale data were narrower for
Model B4 than Model A4.

28 Journal of Energy in Southern Africa * Vol 31 No 3 * August 2020



— [
(']
£ S
=
f o
® B
[ )
(o]
(o ]
[Ty}
_ (o]
(']
£t 8
ES
T
(D]
(o]
=
(o]
u
_ =
o™~ [
<
£ £
=
f (o]
GRS
(e ]
Figure 8:

1500

— — Actuals (GHI)
— — Forecasts (Model A1)
_ 7N
N
roon /]
B f \ ’
§ \ /
¢ W
T T I T
113.0 1135 114.0 114.5 115.0
Time(60-Minutely)
7 = = Actuals (GHI)
— — Forecasts (Model A2)
_ N
rN /
f \ §
1 ' \ é
¥ \ 4
J# a
I I I I
113.0 1135 114.0 114.5 1150
Time(60-Minutely)
1 — — Actuals (GHI)
— = Forecasts (Model A3)
_ N P
/ \ / \
4 A\ \
A4 (W ’
T T T T
113.0 113.5 114.0 114.5 115.0

Time(60-Minutely)

GHIWim 2)

GHIWm"2)

GHIWIm2)

500 1000 1500

0

1000 1500

500

500 1000 1500

0

| = = Actuals (GHI)
— — Forecasts (Model A4)
4 Fal s~
7N A
/ \ / \
i N\ f \
r} \ ! \
iy v \
T T T T
113.0 113.5 114.0 1145 1150
Time(10-Minutely)
| — = Actuals (GHI)
— — Forecasts (Model A5)
i -~
I 2
\ /
/ vy \
ot \ \
’ ! \
L
| # v N
I T T T I
113.0 113.5 1140 1145 115.0
Time(10-Minutely)
- = = Actuals (GHI)
— — Forecasts (Model AG)
— r4 -"\ N
’ \ 7N
! \ / \
el \ (f \
f \ & \
1/ v N\
I I I I I
113.0 1135 114.0 114.5 115.0

Time(10-Minutely)

Two-days-ahead forecasts against actual GHI data series from 14 to 15 January 2017.

29 Journal of Energy in Southern Africa * Vol 31 No 3 * August 2020



GHIWImA2)

GHIWIM2)

GHIWIMA2)

200 400 600 800

0

200 400 600 80O

0

0 200 400 600 800

— = Actuals (GHI)
Forecasts (Model B1)

4 #

’ Y

1 /7
A ¥
ey Fi

112.0

112.5 113.0

Time(60-Minutely)

113.5

= = Actuals (GHI)
Forecasts (Model B2)

- #

112.0

1125 1130

Time(60-Minutely)

1135

= = Actuals (GHI)
Forecasts (Model B3)

Y
N\ !
JN
/// \‘ ’
7 -If

M

2.0 1125 113.0

Time(60-Minutely)

1135

GHIWIM’2)

GHIWIm2)

GHIWm"2)

0 200 400 600 800 0 200 400 600 800

0 200 400 600 800

— — — Actuals (GHI)
— — Faorecasts (Model B4)
| -~ , -
F P
_ \ A
[ 4 \ ! \
I ! \
P ”~ A / \
- \Yi -
I I I I I
112.0 112.5 113.0 113.5 114.0
Time(10-Minutely)
— — = Actuals (GHI)
— — Forecasts (Model BS)
_ » F e
\ A Y
_ ; 1 g N
v N
1 2 ! \
g v \
- ’
I I I I I
112.0 1125 1130 113.5 114.0
Time(10-Minutely)
— — = Actuals (GHI)
— = Faorecasts (Model B6)
| N\
| ¢ \\
4 L7 \
7
| & \
I I I I I
112.0 112.5 113.0 1135 114.0

Time(10-Minutely)

Figure 9: Two-days-ahead forecasts against actual GHI data series from 14 to 15 June 2017
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Figure 10: Comparison of GHI data series with 95% upper and lower prediction intervals
for Model A3 (left) and Model A4 (right)
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Figure 11: Comparison of GHI data series with 95% upper and lower prediction intervals
for Model B3 (left) and Model B4 (right).

8. Discussion of the results

The in-sample diagnostics (i.e. AIC and BIC)
results showed that HCNNAR models (i.e. Model
A3 and Model B3) were superior to
HCSARIMA-NNAR and HCSARIMA models in
modelling larger time-scale GHI data series (i.e.
60-minutely), whilst HCSARIMA-NNAR models
(i.e. Model A4 and Model B4) had a competitive
edge over HCSARIMA and HCNNAR models in
modelling smaller time- scale GHI data series (i.e.
10-minutely) (see Tables 6 and 7). When har-
monically coupling sinusoidal predictors, only
the first sinusoidal predictor was fitted on the
largest ordinate of the GHI data, to minimise the
values of AIC and BIC while allowing the
SARIMA model to capture some of the period--
icities. Besides, the inclusion of a second sinu-
soidal predictor had very little improvement in
the forecasting accuracy.

In the forecasting arena, HCNNAR models
(i.e. Model A3 and Model B3) outperformed the
HCSARIMA-NNAR and HCSARIMA models in
forecasting the 60-minutely time scale GHI data
for each of the months of interest. For the 10-
minutely time scale GHI data, the HCSARIMA-
NNAR models (i.e. Model A4 and Model B4)
outperformed the HCSARIMA and HCNNAR
models (see Tables 9 and 11).

The HCNNAR models (i.e. Model A3 and
Model B3) produced the smallest values of the
standard deviation of the residuals compared to
the other classes of models (i.e. HCSARIMA-
NNAR and HCSARIMA) when predicting 10-
minutely time-scale GHI data for each month of
interest. For the 60-minutely time-scale GHI
data, HCSARIMA-NNAR models (i.e. Model A4
and Model B4) outperformed HCSARIMA and
HCNNAR models, as they had the least values
of standard deviation for the two months under
investigation (see Tables 8 and 10).

The 95% prediction intervals of the forecasts
from all the best four models were valid.

However, Models A3 and Model A4 had
narrower and robust prediction interval limits
than Model B3 and Model B4. Thus, Model A3
and Model A4 forecasting results are more
robust than Model B3 and Model B4 (see Figures
10 and 11), affirming that the predicted values fit
the January 2017 data series better than June
2017 data series (see Figures 8 and 9).

9. Conclusions

Time-series forecasting accuracy forms a
foundation for an effective decision-making
process. Hence, the research towards improving
the effectiveness of prediction models is of
utmost importance (Zhang, 2003). This research
study compared the forecasting performance of
the three classes of harmonically coupled
models, namely the HCSARIMA, HCNNAR and
HCSARIMA-NNAR models in forecasting South
African solar irradiance data. The developed
forecasting models were based on the GHI data
from the RVD radiometric station in the
Northern Cape. The study results indicated that
the HCNNAR and HCSARIMA-NNAR models
were more effective at improving forecasting
accuracy and handling the periodicities due to
diurnal cycles, as well as the deterministic and
stochastic components, than the HCSARIMA
models. Restriction of sinusoidal predictors to
the first predictor helped to minimise the values
of AIC and BIC while improving the prediction
accuracy. The in-sample and out-of-sample dia-
gnostics results showed that HCNNAR models
were best at modelling and forecasting a larger
time scale (ie. 60-minutely) whereas
HCSARIMA-NNAR models were best at model-
ling and forecasting a smaller time scale (i.e. 10-
minutely). The prediction intervals of the fore-
casts for the best four models (i.e. Models A3, A4,
B3 and B4) were found to be satisfactory and
valid. However, Model A3 and Model A4 fitted
to the January data series produced narrower
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and robust prediction intervals. The significant
contribution of this research study is in the
inclusion of the NNAR models and SARIMA-
NNAR models, and the combination of these
models at determined harmonic frequencies to
form HCNNAR models and HCSARIMA-NNAR
models. The study results are compatible with
some of the solar irradiance modelling studies
that have applied harmon-ically coupled models
to improve forecasting error (see Ranganai and
Nzuza, 2015). The study will make a significant
contribution to the renewable energy field,

References

specifically short-term solar irradiance model-
ling. Policymakers and utility managers can use
the study results to draw effective integration
strategies of large volumes of solar power in the
national electrical grid.

Author contributions

K.S Sivhugwana: Research
analysis and write-up.

E Raganai: Research formulation, data analysis,
quality assurance and guidance in write-up.

formulation, data

Ahdesmaki, A., Lahdesmaki, H., and Yli-Harja, O. (2007). Robust Fisher’s test for periodicity detection in
noisy biological time series. IEEE International Workshop on Genomic Signal Processing and
Statistics, Tuusula, 1-4. doi: 10.1109/GENSIPS.2007.4365817.

Akaike, H. (1983). Information measures and model selection. Bulletin of the International Statistical

Institute, 50: 277-290.

Baridam, B., and Irozuru, C. (2012). The prediction of prevalence and spread of HIV/AIDS using artificial
neural network: The case of Rivers State in the Niger Delta, Nigeria. International Journal of
Computer Applications, 44 (2). 0975-8887. https://doi: 10.5120/6239-8584.

Brooks, M. J., du Clou, S., van Niekerk, J. L., Gauche, M. J., Leonard, P., Mouzouris, C., Meyer, A. J., van
der Westhuizen, E. E., van Dyk, N., and Vorster, F. (2015). SAURAN: A new resource for solar
radiometric data in Southern Africa. Journal of Energy in Southern Africa, 26 (1): 2-10.
https://doi.org/10.17159/2413-3051/2015/v26i1a2208.

Box, G. E. P., Jenkins, G. M., and Reinsel, G. C. (1994). Time series analysis, forecasting and control (3rd

Edition). New Jersey: Prentice Hall.

Box, G. E. P, and Jenkins G. M. (1976). Time series analysis: Forecasting and control. Operational Research

Quarterly, 22: 199-201.

Bozkurt, O. O., Biricik, G., and Taysi, C. Z. (2017). Artificial neural network and SARIMA based models for
power load forecasting in Turkish electricity market. PloS one, 11: e€0175915.

https://doi.org/10.1371/journal.pone.0175915.

Chaturvedi, D. K., and Isha, 1. (2016). Solar power forecasting: A review. International Journal of Computer
Applications (0975 - 8887), 145: 28-50. https://d0i:110.5120/ijca2016910728.

Chu, Y., Urquhart, B., Gohari,S. M., Pedro, H. T., Kleissl, J., and Coimbra, C. F. (2015). Short-term
reforecasting of power output from a 48 mwe solar PV plant. Solar Energy, 112: 68-77.

http://dx.doi.org/10.1016/j.solener.2014.11.017.

Diagne, H. M., David, M., Lauret, P., Boland, J., and Schmutz, N. (2013). Review of solar irradiance
forecasting methods and a proposition for small-scale insular grids. Renewable and Sustainable Energy
Reviews, 27: 65-76. https://doi: 10.1016/j.rser.2013.06.042.

Fonseca Jr., J. G. S., Oozeki, T., Takashima, T., and Ogimoto, K. (2011). Analysis of the use of support
vector regression and neural networks to forecast insolation for 25 locations in Japan. In: Proceedings

of ISES Solar World Congress. Kassel, Germany.

Govindasamy, T. R., and Chetty, N (2019). Non-linear multivariate models for the estimation of global
solar radiation received across five cities in South Africa. Journal of Energy in Southern Africa, 30 (2) :

38-51. https://orcid.org/0000-0002-9809-4230.

Hyndman, R. J., and Athanasopoulos, G. (2013). Forecasting: Principles and practice. Retrived from

https://otexts.com.

Inanlougani, A., Reddy, T. A., and Katiamula, S. (2017). Evaluation of time-series, regression and neural
network models for solar forecasting: Part I: One-hour horizon, 1-20

IRENA [International Renewable Energy Agency]. (2016). The power to change: Solar and wind cost
reduction potential to 2025. Retrived from: https://www.irena.org/-
/media/Files/IRENA/Agency/Publication/2016/IRENA Power to Change 2016.pdf

32 Journal of Energy in Southern Africa * Vol 31 No 3 * August 2020


https://otexts.com/
https://www.irena.org/-/media/Files/IRENA/Agency/Publication/2016/IRENA%20Power%20to%20Change%202016.pdf
https://www.irena.org/-/media/Files/IRENA/Agency/Publication/2016/IRENA%20Power%20to%20Change%202016.pdf

Khalek, A., and Ali, A. (2015). Comparative study of Wavelet-SARIMA and Wavelet- NNAR models for
groundwater level in Rajshahi District. IOSR Journal of Environmental Science, Toxicology and Food
Technology (IOSR-JESTFT), 10 (7): 2319-2399.

Kibirige, B. (2018). Monthly average daily solar radiation simulation in: northern KwaZulu-Natal: A
physical approach. South African Journal of Science, 114: 1-8. https://doi.
org/10.17159/sajs.2018/4452

Liew, A. W.C,, Law, N. F., Cao, X. Q., and Yan, H. (2009). Statistical power of Fisher test for the
detection of short periodic gene expression profiles. Pattern Recognition, 42: 549-556.
https://doi.org/10.1016/j.patcog.2008.09.022

Lorenz, E., Hammer, A., and Heinemann, D. (2004). Short term forecasting of solar radiation based on
satellite data. In: Proceedings of EuroSun 2004 Congress. Freiburg, Germany: 841-848.

Martin, A., Kourentzes, A., and Trapero, J. R. (2015). Short-term solar irradiation forecasting based on
dynamic harmonic regression. Energy, 84: 289-295. https://doi.org/10.1016 /jenergy.2015.02.100.
Mpfumali, P., Sigauke, C., Bere, A. and Mulaudzi, S. (2019). Day ahead hourly global horizontal irradiance
forecasting-application to South African data. Energies, 12(18): 1-28.

https://doi.org/10.3390/en12183569

Mukaram, M. Z., and Yusof, F. (2017). Solar radiation forecast using hybrid SARIMA and ANN model: A
case study at several locations in peninsular Malaysia. Malaysian Journal of Fundamental and Applied
Sciences - Special Issue on Some Advances in Industrial and Applied Mathematics, 13 (4): 346-350.
https://doi:10.11113/mijfas.v13n4-1.895.

Pavlovski, A., and Kostylev, V. (2011). Solar power forecasting performance towards industry standards.
In: 1st International Workshop on the Integration of Solar Power into Power Systems. Aarhus,
Denmark.

Pretorius, P., and Sibanda, W. (2012). Artificial neural networks: A review of applications of neural
networks in the modeling of HIV epidemic. International Journal of Computer Applications, 44(16): 1-
4,

Ranganai, E., and Nzuza, M. B. (2015). A comparative study of the stochastic models and harmonically
coupled stochastic models in the analysis and forecasting of solar radiation data. Journal of Energy in
Southern Africa, 26(1): 25-137.

Schwarz, G. (1978). Estimating the dimension of a model. The Annals of Statistics, 6: 461-464.

Sena, D., and Nagwani, N. K. (2016). A neural network autoregression model to forecast per capita
disposable income. ARPN Journal of Engineering and Applied Sciences, 11(22): 13123-13128.

Suleiman, E. A., and Adejumo, A. O. (2017). Application of ARMA-GARCH models on solar radiation for
South Southern Region of Nigeria. Journal of Informatics and Mathematical Sciences, 9(2): 405-416.
http://dx.doi.org/10.26713%2Fjims.v9i2.742.

Voyant, C., Notton, G., Kalogirou, S., Nivet, M., Paoli, C., Motte, F., and Fouilloy, A. (2017). Machine
learning methods for solar radiation forecasting: A review. Renewable Energy, 105: 569-582.

Voyant, C., Muselli, M,, Paoli, C., and Nivet, M. L. (2011). Optimization of an artificial neural network
dedicated to the multivariate forecasting of daily global radiation. Energy, 36: 48-59.

Wei, W. (2006). Time series analysis: Univariate and multivariate methods (2nd Edition). Boston: Addison-
Wesley.

Yarmohammadi, M. (2011). A filterbased Fisher g-test approach for periodicity detection in time series
analysis. Scientific Research and Essays, 6: 7317-3723. https://doi: 10.5897/SRE11.802.

Zhang, G. P. (2003). Time series forecasting using a hybrid ARIMA and neural network model.
Neurocomputing, 50: 159-175.

Zhang, J., Hodge, B. M, Florita, A., Lu, S., Hamann, H. F., and Banunarayanan, V. (2013). Metrics for
Evaluating the Accuracy of Solar Power Forecasting. In: preceedings of the 3rd International
Workshop on Integration of Solar Power into Power Systems. London, England.

Zhandire, E (2017). Predicting clear-sky global horizontal irradiance at eight locations in South Africa

using four models. Journal of Energy in Southern Africa, 28: 77-86. https://doi.org/10.17159/2413-

3051/2017/v28i4a2397.

33 Journal of Energy in Southern Africa * Vol 31 No 3 * August 2020


https://doi.org/10.1016%20/j.energy.2015.02.100
https://doi.org/10.3390/en12183569
http://dx.doi.org/10.26713%2Fjims.v9i2.742
https://doi.org/10.17159/2413-3051/2017/v28i4a2397
https://doi.org/10.17159/2413-3051/2017/v28i4a2397

Appendix A

Table Al: Parameter estimation for sinusoidal predictor function, fitted on 60-minutely
GHI data series for January 2017.

Parameter Estimate P-value Lag
u 591.329 0.000 0
By -177.366 0.000 0
a, -479.548 0.000 0

Table A2. Parameter estimation for SARIMA model, fitted on 60-minutely
GHI data series for January 2017.

Parameter Estimate Confidence interval Lag
o 0.2697 (0.024, 0.515) 1
R 0.4022 (0.144, 0.661) 2
¢ -0.0192 (-0.204, 0.165) 3
4 -0.1541 (-0.309, 0.001) 4
0, 0.7693 (0.557, 0.981) 1

Table A3: Parameter estimation for sinusoidal predictor function, fitted on 10-minutely
GHI data series for January 2017.

Parameter Estimate P-value Lag
U 585.840 0.000 0
By 185435 0.000 0
a, -452.952 0.000 0

Table A4: Parameter estimation for the SARIMA model, fitted on 10-minutely
GHI data series for January 2017.

Parameter Estimate Confidence interval Lag
oy 0.268 (0.171, 0.364) 1
¢, 0.666 (0.571,0.761) 2
0; 0.868 (0.802, 0.935) 1

Table A5: Parameter estimation for sinusoidal predictor function, fitted on 60-minutely
GHI data series for June 2017.

Parameter Estimate P-value Lag
u 285.216 0.000 0
b1 -51.214 0.000 0
a, -279.769 0.000 0

Table A6: Parameter estimation for SARIMA model, fitted on 60-minutely
GHI data series for June 2017 data.

Parameter Estimate Confidence interval Lag
o 0.549 (0.353, 0.745) 1
0, 0136 (-0.059, 0.332) 1
0, 0.382 (0.195, 0.570) 2
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Table A7: Parameter estimation for sinusoidal predictor function, fitted on 10-minutely
GHI data series for June 2017.

Parameter Estimate P-value Lag
U 325.929 0.000 0
b1 -29.464 0.000 0
o, -256.071 0.000 0

Table A8: Parameter estimation for the SARIMA model, fitted on 10-minutely
GHI data series for June 2017.

Parameter Estimate Confidence interval Lag
o} 0197 (-0.053, 0.447) 1
b, 0.668 (0.446, 0.889) 2
0, 0.588 (0.334, 0.841) 1
0, -0.189 (-0.269, -0.109) 2
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Figure B1. Adequacy examination for Model A3 for January 60-minutely data
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Figure B2: Adequacy examination for Model A4 for January 10-minutely data.
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X-squared = 1744, df = 24, p-value = 0.8293

Figure B3: Adequacy examination for Model B3 for June 60-minutely data.
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Figure B4: Adequacy examination for Model B4 for June 10-minutely data.
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