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Abstract 
Wind is a naturally variable resource that fluctuates across timescales and, by the same token, the electricity 
generated by wind also fluctuates across timescales. At longer timescales, i.e., hours to days, synoptic-scale 
weather systems, notably cold fronts during South African winter months, are important instigators of strong 
wind conditions and variability in the wind resource. The variability of wind power production from aggre-
gates of geographically disperse turbines for the passage of individual cold fronts over South Africa was 
simulated in this study. When considering wind power variability caused by synoptic-scale weather patterns, 
specifically cold fronts, the timescale at which analysis is conducted was found to be of great importance, as 
relatively small mean absolute power ramps at a ten-minute temporal resolution, order of 2-4% of simulated 
capacity, can result in large variations of total wind power production (at the order of 32–93% of simulated 
capacity) over a period of three to four days as a cold front passes. It was found that when the aggregate 
consists of a larger and more geographically dispersed set of turbines, as opposed to a smaller set of turbines 
specifically located within cold-front dominated high wind areas, variability and the mean absolute ramp rates 
decrease (or gets ‘smoothed’) across the timescales considered. It was finally shown that the majority of large 
simulated wind power ramp events observed during the winter months, especially at longer timescales, are 
caused by the passage of cold fronts.   
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Highlights:  
• Significant wind power variability is caused by the passage of cold fronts. 
• Wind power variability becomes larger as longer timescales are considered. 
• The smoothing effect becomes greater as geographically dispersed turbines are added to an aggregated 

time-series.
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1. Introduction 
Electricity generated by wind turbines fluctuates with 
wind speed and wind speed varies at all timescales, 
from decades down to sub-seconds (Widén et al., 
2015). At short timescales (less than one hour), 
these fluctuations are caused by turbulent eddies in 
the boundary layer, brought about by the interaction 
of meso-scale weather systems with the local envi-
ronment. Short-term variability may be caused by 
local features such as terrain, surface roughness or 
micro-climatic phenomena such as sea-breezes. At 
longer timescales, of hours to several days, the most 
prominent variations are brought about by synoptic-
scale weather systems (Kiviluoma et al., 2016). 
Amongst the most frequent of synoptic systems that 
affect South Africa’s weather are extra-tropical cy-
clones, and the cold fronts associated with them. Lit-
tle literature could be found where the underlying 
causative meteorological phenomena driving wind 
ramp events were studied (Couto et al., 2015; 
Gallego-castillo et al., 2015; Lacerda et al., 2017). 
Furthermore, attempts to find literature in which 
wind power ramp events associated with specific 
weather systems had been studied for South Africa 
were not successful. In the South African context, 
cold fronts are deemed highly relevant to the wind 
energy industry as they are the main strong wind 
producers along the coast and adjacent interior of 
South Africa (Kruger et al., 2010). Strong winds 

from the passage of cold fronts dominate the south-
ern parts of the country, though these winds often 
reach further north, as shown in Figure 1.  

The variability and distributed nature of the wind 
resource present numerous challenges to the inte-
gration of wind energy into future power networks. 
Such challenges include suboptimal unit allocation 
of thermal dispatchable units and low capacity credit 
of variable renewable energy (VRE) generators 
(Albadi et al., 2010; Ueckerdt et al., 2015). These 
problems, associated with the incorporation of VRE 
into the power network, are expected to become 
more pronounced as the level of VRE penetration 
increases. Currently, South Africa remains heavily 
reliant on coal (Mcewan, 2017), but it is, however, 
anticipated that wind energy will play an important 
part in the country’s future energy mix, as the coun-
try is rich in wind resources (Knorr et al., 2016) and 
has a favourable policy environment for renewable 
energy development (Department of Energy, 2018). 

The present study provided a first iteration anal-
ysis that quantifies anticipated induced variability 
and wind power ramps during the passage of typical 
South African frontal systems. Understanding this 
variability and power ramps could assist network op-
erators in unit commitment, load scheduling and 
short-term maintenance planning. There is a signifi-
cant body of literature considering the nature and 
effects of wind power variability (Kiviluoma et al.,

  
Figure 1: Map of South Africa defining the dominant strong wind mechanisms responsible for 

maximum annual hourly wind speeds (Kruger 2011).
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2016; Choukri et al., 2017; Kalverla et al., 2017; 
Monforti et al., 2016; Sørensen et al., 2018; Prasad 
et al., 2009; Thapar et al., 2011). This literature may 
be divided into studies that were conducted using 
real wind power data (Kiviluoma et al., 2016; 
Choukri et al., 2017) and those using meteorological 
data. The latter may in turn be divided between 
studies using actual observational data (Kalverla et 
al., 2017) and studies using outputs from numerical 
weather prediction (Monforti et al., 2014; Sørensen, 
Heunis, et al., 2018) as proxies for generation data. 
Observed or modelled wind speeds are frequently 
used to estimate wind power potential through the 
use of wind resource assessments (Prasad et al., 
2009a; Prasad et al., 2009b) and transforming wind 
speeds to power through turbine power curves 
(Thapar et al., 2011). There is significant evidence 
supporting the idea of the ‘smoothing effect’, i.e., re-
ductions in the gradient of electricity feed-in, 
brought about by aggregation effects from geo-
graphically dispersed wind generators (Widén et al., 
2015). The smoothing effect is attributed to wind 
speed that varies with geographical distance, where 
the greater the distance the more dissimilar the wind 
resource. From the literature considered (Albadi et 
al., 2010), it was, however, found that this smooth-
ing effect is more pronounced over short rather than 
long time intervals. It may be contended that power 
ramps and variability at time periods of smaller than 
ten minutes are of greatest importance from a tur-
bine design perspective, rather than a power system 
perspective, as it is assumed that fluctuations at 
these timescales would be effectively smoothed 
(Sørensen et al., 2008; Widén et al., 2015). How-
ever, variability over longer time intervals (greater 
than or equal to an hour) across relatively large spa-
tial extents is considered to be of greater importance 
to the security and adequacy of power systems 
(Kiviluoma et al., 2016). Variability at longer time-
scales is also considered to be of greater importance 
to this study, as it has been found that longer-time-
scale, synoptic-scale weather patterns (such as cold 
fronts) drive variability (Kiviluoma et al., 2016). 

It has been noted that it is difficult to make gen-
eralisations on resource variability for a specific re-
gion based on studies done for other regions 
(Kiviluoma et al., 2016; Gallego-Castillo et al., 
2015). This is especially true for studies considering 
the prevailing meteorological processes inherent to 
a specific region, highlighting the importance of con-
ducting region-specific studies. In studies conducted 
by Knorr et al. (2016) and Sørensen et al. (2018), 
the variability of the wind energy resource in South 
Africa was assessed using the Weather Research and 
Forecasting Model (Skamarock et al., 2008) reanal-
ysis data. Both studies found that power ramps will 
be significantly reduced by aggregated smoothing, 

as the number of geographically dispersed genera-
tors feeding into the grid increases over time. Both 
Knorr et al. (2016) and Sørensen et al. (2018) fo-
cused on wind power variability and ramps at high 
temporal resolutions of ten and 15 minutes respec-
tively, but not on timescales of hours to days. Aggre-
gated smoothing is most evident at short timescales; 
however, larger power ramps become evident at 
longer timescales due to the impact of slower-mov-
ing, synoptic-scale weather systems (Widén et al., 
2015; Kiviluoma et al., 2016). Indeed, in a study 
considering various countries (Mararakanye et al., 
2019), it was found that variations from 15 minutes 
to eight hours could be from 10–40% of installed ca-
pacity, which highlights the importance of conduct-
ing variability studies focused specifically on longer 
timescales. Therefore, in addition to considering 
variability in wind power production introduced by 
synoptic-scale weather systems at short timescales, 
the present study also analysed such variability and 
power ramps at hourly and daily timescales.  

2. Methodology 
Simulations were conducted representing wind 
power generation during the passage of several cold 
fronts over South Africa. A cold front may somewhat 
simply be defined as the baroclinic boundary be-
tween a mass of cold air and warm air, where tem-
perature decreases by a minimum of 3 °C 
(Eumetrain, 2012). There are no strict empirical def-
initions of a cold front, especially in terms of its sig-
nificance, therefore, noteworthy historic cold fronts 
that had made landfall in South Africa were identi-
fied from news media reporting or from increases in 
observed wind speeds from Wind Atlas for South Af-
rica (WASA) observational mast data (Council for 
Scientific and Industrial Research (CSIR), 2010; 
ECR Newswatch, 2016). 

Subsequently, the corresponding synoptic 
weather charts, publicly downloadable as open ac-
cess from the South African Weather Service’s web-
site, were used for more concise identification of 
fronts (South African Weather Service, 2018). An 
example of such a synoptic weather map depicting 
an approaching extra-tropical cyclone with its asso-
ciated cold front is shown in Figure 2.  

Wind power simulations were conducted for the 
passage of four cold fronts during August 2012, May 
2013, and two consecutive events in July 2016 ap-
proximately two days apart. Wind speed and direc-
tion time series at four observational heights (20 m, 
40 m, 60 m, 62 m), with a ten-minute temporal res-
olution, were obtained for fifteen WASA observa-
tional masts, represented by WM1-15 in Figure 3. 
The observational data, freely available from WASA 
(CSIR, 2010), was downloaded for periods corre-
sponding to those of selected cold fronts making 
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Figure 2: Surface synoptic weather map showing a cold front approaching South Africa  
(South African Weather Service, 2018).  

Figure 3: Locations of observational masts (Google Earth Pro, 2019), indicated by WM 1-10. 

landfall in South Africa. The WM1-10 were installed 
during the WASA 1 project throughout 2010. The 
WM11-15 were installed during the WASA 2 project 
throughout 2015; therefore, the 2012 and 2013 sim-
ulations comprised data from ten observational 
masts. With the addition of WASA Phase 2 and the 
decommissioning of WM04 and WM08, the 2016 

simulation consisted of data from 13 observational 
masts. Wind speeds were extrapolated from 62 m to 
the selected hub height of 80 m using Hellman’s law, 
defined by Equation 1. 

     𝑣𝑣2
𝑣𝑣1

= (ℎ2
ℎ1

)𝛼𝛼 (1) 
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where v2 is the unknown wind speed at height h2, 
v1 is the measured wind speed at h1, and α is Hell-
man’s component or the wind shear component. As 
wind speed data is available at two heights, α was 
calculated through a log linear model, defined by 
Equation 2. 

     𝛼𝛼 =
log (𝑣𝑣2𝑣𝑣1

)

log (ℎ2ℎ1
)
 (2) 

It is unrealistic to assume that the same turbine 
would be installed across the study area. Historic 
wind speeds observed at the observational masts 
(Mortensen et al., 2012) were, therefore, used to de-
termine the likely International Electrotechnical 
Commission (IEC) class of turbines to be installed in 
a specific region. Subsequently two turbines from 
the same manufacturer, Nordex_N90 (IEC II) and 
Nordex_N100 (IEC III), with the same nameplate 
capacity of 2.5 MW, were selected. The selection 
was in part based on the Renewable Energy Inde-
pendent Power Producer Procurement Programme 
wind farm projects, including the South African 
Dorper (31.478S, 26.438E) and Kouga (34.056S, 
24.625E) wind farms, where these respective tur-
bine types are installed. Power curves consisting of 
discrete points were obtained from the manufac-
turer, through the XML package in R (Lang, 2018), 
as shown in Figure 4. 

Piece-wise functions were defined to emulate the 
power curves. Accordingly, the power curve was di-
vided into four distinct functions. Three of these 
were simple horizontal straight-line functions: a 
function through the rated power, and two functions 
through the origin. These were for wind speeds of 
less than the cut-in speed and greater than the cut-
out and rated wind speeds, respectively (Joubert, 
2017). The final function was represented by a 
higher (tenth) order polynomial for wind speeds be-
tween the cut-in and the rated wind speeds. The lm 
function, which forms part of R base, was used for 

polynomial regression (R Core Team, 2018). It was 
found that the derived polynomial functions pre-
dicted the power curve nearly perfectly (R2 ≈ 1), ex-
cept for wind speeds approaching the cut-in and 
rated wind speeds. To resolve these difficulties, lin-
ear regression was applied to obtain a linear func-
tion to resolve wind speeds between the cut-in wind 
speed and the first discrete point on the power 
curve, i.e., 3 ≤ x < 4 m/s. A similar procedure was 
performed to be able to predict wind speeds be-
tween the final discrete point on the power curve 
and the rated wind speed. Once the power curves 
had been defined, wind power simulations were per-
formed for the selected cold fronts. In the simula-
tions, each of the observational masts for which 
wind speed data was obtained served as a proxy for 
a potential wind turbine. Unanimous indicators for 
the time of the cold front making landfall had to be 
selected for comparison between events. The follow-
ing range of information sources and indicators were 
considered: 
• a distinct change in wind direction, usually from 

the north-westerly sector to the south-westerly 
at WM05 (19.69245°E, 34.61192°S) (however, 
due to the orientation of some fronts not follow-
ing the typical textbook examples this would not 
always be the case); 

• the boundary at the surface between the 
warmer and colder air masses in the south-west 
of the Western Cape province, i.e., a cold front, 
indicated by an observable drop in surface tem-
perature; 

• stronger wind speeds due to the change in wind 
direction and associated turbulence in the 
boundary layer; 

• the commencement of rain; and 
• interrogation of South African Weather Service 

daily synoptic charts. 

It should be noted that all the above signals do 
not occur at the same time, but can be hours apart. 
However, considering the information available,

 
 

Figure 4: Nordex N90 & N100 power curves (Lang, 2018). 
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commencement dates of the movement of the cold 
fronts over the virtual wind turbines were selected, 
indicated as yellow lines in Figure 5. After the wind 
power simulation of individual fronts, the simulation 
was extended for passage of cold fronts throughout 
the months of interest, i.e., August 2012, May 2013 
and July 2016.  

Two simple methods of aggregation of simulated 
wind power time series were used. For the first set of 
simulated time series, hereafter referred to as the 
‘uniform aggregation’, the ten-minute time-step 
wind power values generated by each of the proxies 
were aggregated into a single time series using a sim-
ple mean. For the second set of simulation time se-
ries, hereafter referred to as the ‘cold front domi-
nated aggregation’, only the proxy generators lo-
cated in the cold front dominated geographic re-
gions, as presented in Figure 1, were selected. The 
‘cold front dominated aggregation’ consisted of a 
mean from the WM04, WM05, WM07, WM08 and 
WM10 time series, for the 2012 and 2013 simula-

tions. For the 2016 simulation, WM04 and WM08 
data were not available, so that data from WM11, 
WM12 and WM13, which are also located within 
cold front-dominated high wind areas, were added. 
The aggregated time series of wind power outputs 
for each of the simulations was considered as a per-
centage of the installed capacities considered within 
the simulation. The wind power simulations were 
then analysed within the context of the differences 
in generation between consecutive time intervals, 
i.e., the power ramps. Accordingly, the mean-simu-
lated wind power time series from each of the dis-
tinct observational masts were aggregated at ten-mi-
nute, hourly and daily timescales.  

3. Results and discussion  
When considering the aggregated time series against 
that of each individual simulation, the smoothing ef-
fect becomes clearly evident, as shown in Figure 6, 
where a less pronounced fluctuation between min-
ima and maxima values is evident.  

Figure 5: Wind direction (in degrees clockwise from North) during the month of August 2012 with 
the passage of several cold fronts, where the yellow lines indicate the start of the passage of cold 

fronts through the region under consideration. 

Figure 6: Aggregated versus individual power time series during the passage of a cold front at ten-
minute timescale. The yellow line indicates the start of the passage of the cold front through the 

region under consideration.  
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This is fairly similar to what was observed by 
Knorr et al. (2016) and it could be inferred that this 
line would become even smoother at the ten-minute 
timescale should more generators be added to the 
aggregate. Despite significant smoothing evident in 
the aggregated time series, a considerable degree of 
variability remained evident if considering the simu-
lation in its entirety across four days. Figure 7 repre-
sents the two wind power simulations conducted for 
the cold front making landfall in the Western Cape 

on 22 August 2012 and should be read in conjunc-
tion with Figure 8, showing a synoptic weather map 
of this cold front. Figure 7 shows that a sharp and 
immediate ramp up in wind power generation, fol-
lowed by a more gradual ramp down, was associ-
ated with the passage of the front.  

The variability of these simulations, expressed in 
terms of mean absolute ramp rate, coefficient of var-
iation and maximum power ramps (up and down), 
is summarised in Table 1 at the ten-minute, hourly 

 
Figure 7: Wind power simulation for (a) ‘uniform aggregation’, and (b) ‘cold front-dominated 

aggregation’ methods, during the passage of a cold front making landfall on 24 August 2012. The 
yellow line indicates the start of the passage of the cold front (CF) through the region under 

consideration. 

Figure 8: Synoptic weather map depicting the cold fronts considered for the 24 August 2012 wind 
power simulation (South African Weather Service, 2018). 

(a) (b)
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and daily timescales. Table 1 shows that wind power 
variability was greater in the ‘cold front-dominated 
aggregation’ than in the ‘uniform aggregation’, 
across all measured indices (except from the daily 
max ramp down). This can likely be attributed to the 
increase in turbine numbers in the simulation and 
turbine placements outside of geographic areas 
where cold fronts were the dominant strong wind-
producing mechanism. Table 1 also presents an in-
creasing variability across all measured indices as 
the measurement period increased.  

Figure 9 represents the two wind power simula-
tions conducted for the cold front making landfall in 
the Western Cape on 26 May 2013. A synoptic 
weather map of this cold front is shown in Figure 10. 
The wind power variability in these simulations, ex-
pressed in terms of the mean absolute ramp rate, co-
efficient of variation and maximum ramp ups, is 
summarised in Table 2 at the ten-minute, hourly and 
daily timescales. Figure 9 shows a ramp up-ramp 
down pattern similar to that in Figure 7, although in 
this instance these ramps are relatively subdued, 
likely because of the differing intensities and tracks 
of the respective systems. Table 2 presents a wind 
power that is more variable in the ‘cold front aggre-

gation’ than in the ‘uniform aggregation’ methods, 
which is also similar to what was observed in the 
previous simulation. Although the mean power 
ramps remained the largest at the longest timescale 
in Table 2, this was different for the coefficient of 
variation and max ramp ups, which was greater at 
the 10-minute timescale. 

For the July 2016 simulations, two consecutive 
cold fronts were considered: the first making landfall 
on 5 July, and the second on 8 July. As with the 
previous simulations, a steep ramp up in simulated 
wind power generation was followed by a ramp 
down. As shown from the synoptic weather maps in 
Figure 12, the cold front making landfall on 05 July 
was located further to the north and, consequently, 
as shown in Figure 11, had a larger impact on the 
wind power generated than the cold front making 
landfall on 08 July. The variability of these simula-
tions, expressed in terms of mean absolute ramp 
rate, coefficient of variation and maximum ramp 
ups, is summarised in Table 3. Table 3 reveals simi-
lar trends to Tables 1 and 2, where variability tended 
to increase in proportion to the timescale and to de-
crease in inverse proportion to the number of tur-
bines. 

Table 1: Summary of the mean absolute power ramp rate, coefficient of variation and maximum 
power ramps at ten-minute, hourly and daily timescales for a cold front making landfall on  

24 August 2012. 

No. of turbines 
in aggregate 
time series 

Period Mean power 
ramp rate 

(%) 

Coefficient 
of variation 

Max 
ramp up 

(%)  

Max ramp 
down  
(%) 

Total variation  
in simulated  
capacity  (%) 

5 

10 min 3.67 0.46 40.26 40.00 

8.09-100.00 Hourly 6.21 0.46 27.64 20.93 

Daily  29.09 0.65 63.07 28.10 

10 

10 min 2.82 0.56 31.04 21.25 
5.49-99.05 

 
Hourly 4.31 0.60 20.49 15.04 

Daily  27.37 0.63 49.90 44.10 

Table 2: Summary of the mean absolute power ramp rate, coefficient of variation and maximum 
power ramps at ten-minute, hourly and daily timescales for a cold front making landfall on 

 26 May 2013. 

No. of turbines 
in aggregate 
time series 

Period Mean 
power ramp 

rate (%)  

Coefficient 
of variation 

Max ramp 
up  
(%) 

Max ramp 
down 
(%)  

Total variation  
in simulated  
capacity (%)  

5 

10 min 3.30 0.39 25.59 13.16 

6.22- 93.55 Hourly 5.98 0.29 17.65 17.46 

Daily  14.74 0.22 13.32 21.11 

10 

10 min 2.07 0.37 13.78 10.51 

5.77-71.01 Hourly 3.65 0.16 10.56 9.80 

Daily  14.64 0.35 11.97 26.28 
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Figure 9: Wind power simulation for (a) ‘uniform aggregation’, and (b) ‘cold front-dominated 
aggregation’ methods, during the passage of a cold front making landfall on 26 May 2013. The 
yellow line indicates the start of the passage of the cold front (CF) through the region under 

consideration. 

 

Figure 10: Synoptic weather map depicting the cold front considered for the 26 May 2013 wind 
power simulation. (South African Weather Service, 2018). 

  

(a) (b)
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Table 3: Summary of the mean absolute power ramp rate, coefficient of variation and max-
imum power ramps at ten-minute, hourly and daily timescales for the consecutive cold fronts 
making landfall on 5 and 8 July 2016. 

 
Date 

 
No. of tur-
bines in ag-
gregate time 

series 

Period Mean 
power 

ramp rate 
(%)  

Coefficient 
of variation 

Max 
ramp up 

(%)  

Max ramp 
down 
(%)  

Total varia-
tion in simu-
lated capac-

ity (%)  

2016-
07-05 

6 

10 min 2.67 0.52 16.52 12.05 

7.99-80.14 Hourly 5.24 0.52 18.28 16.87 

Daily  17.05 0.44 39.38 10.89 

13 

10 min 1.81 0.34 8.99 6.19 

12.59-73.16 Hourly 3.09 0.33 10.91 7.73 

Daily  11.37 0.21 19.94 10.09 

2016-
07-08 

6 

10 min 2.17 0.47 10.47 10.36 

4.78-66.73 Hourly 5.24 0.47 18.28 16.87 

Daily  21.04 0.32 28.49 21.04 

13 

10 min 1.55 0.33 16.52 12.05 

7.93-49.84 Hourly 3.38 0.33 9.03 9.03 

Daily  18.04 0.28 25.03 11.01 

 
Figure 11: Wind power simulation for (a) ‘uniform aggregation’, and (b) ‘cold-front dominated 

aggregation’ methods, during the passage of consecutive cold fronts making landfall on 5 and 8 
July 2016. The yellow lines indicate the start of the passage of the cold front (CF) through the region 

under consideration.  

Figures 13–14 show that the mean absolute 
power ramp rate increased significantly as the tem-
poral resolution decreased from ten minutes to 
hourly and to daily for all cold fronts considered. 
This highlights the importance of conducting analy-
sis at longer time scales when studying the impact of 
synoptic scale systems on wind power variability. 
Mean absolute power ramps across timescales were 
larger for the ‘cold front-dominated aggregation’ 

than for the ‘uniform aggregation’. The mean differ-
ence in percentage in mean absolute power ramps 
between the two aggregation methods were: 
30.30% at ten minutes, 36.52% at hourly, and 
13.52% at daily. At the ten-minute and hourly time-
scales, differences between the aggregation scenar-
ios were larger than at the daily timescale. When 
comparing differences in the coefficient of variation 
between the aggregation scenarios, it was similarly 

(a) (b)
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found that the cold front dominated aggregate and 
usually had a higher coefficient of variation than the 
uniform aggregate across timescales. The differ-
ences between aggregation scenarios were: 11.95% 
at ten minutes, 20.18% at hourly, and 2.19% at 
daily. Similar to comparisons between mean abso-
lute ramp rates, differences in the coefficient of var-
iations between aggregation scenarios were larger at 
the ten-minute and hourly timescales than at the 

daily timescale.  
Figures 15–20 illustrate wind power simulations 

for the two geographic aggregation scenarios con-
sidered throughout this study, for the months of Au-
gust 2012, May 2013 and July 2016, at ten-minute, 
hourly and daily timescales. Visual inspection shows 
that most of large spikes in wind power production, 
especially at the daily timescale, were preceded by a 
cold front making landfall in the Western Cape.

 
 

Figure 12: Synoptic weather maps depicting the respective cold fronts considered for the July 2016 
wind power simulation, where (a) shows the front making landfall on the 5 July, and (b) shows the 

front making landfall on 8 July (South African Weather Service, 2018). 

 
Figure 13: Mean absolute ramp rates from ‘uniform aggregation’ wind power simulations during the 

passage of individual cold fronts (CF). 
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Figure 14: Mean absolute ramp rates from ‘cold front-dominated aggregation’ simulations during the 

passage of individual cold fronts (CF). 

Spikes in power production that was not accom-
panied by a cold front could also be identified. An 
example of this was 27 August 2012, where mostly 
clear sky conditions were observed and the weather 
was dominated by a ridging high pressure system 
extending east from the quasi-stationary Atlantic 
high pressure system onto the sub-continent. The 
Atlantic or Indian Ocean high pressure systems ridg- 

ing onto the subcontinent were also identified by 
Kruger et al. (2013) as a common source of annual 
maximum wind gusts. Notwithstanding such less 
common instances in winter, Figures 15–20 show 
that the majority of large ramp events during the 
months considered, especially at longer timescales, 
were caused by the passage of cold fronts.   

 
 

Figure 15: Wind power simulation for the ‘uniform aggregation’ for August 2012. The yellow lines 
indicate the start of the passage of the cold fronts (CF).  
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Figure 16: Wind power simulation for the ‘cold front-dominated aggregation’ for August 2012.  
The yellow lines indicate the start of the passage of the cold fronts (CF). 

Figure 17: Wind power simulation, consisting of an aggregate of 10 turbines for May 2013. The 
yellow lines indicate the start of the passage of the cold fronts (CF). 

Figure 18: Wind power simulation for the ‘cold front-dominated aggregation’ for May 2013. The 
yellow lines indicate the start of the passage of the cold fronts (CF. 
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Figure 19: Wind power simulation for the ‘uniform aggregation’ for July 2016. The yellow lines 
indicate the start of the passage of the cold fronts (CF). 

Figure 20: Wind power simulation for the ‘cold front dominated aggregation’ for July 2016. The 
yellow lines indicate the start of the passage of the cold fronts (CF). 

4. Conclusions 
Based on the simulations of wind power production 
during the passage of cold fronts as conducted 
within this study, the following conclusions are 
made: 
• When aggregating a wind power production 

time series from geographically distributed gen-
erators, a reduction in wind power variability 
was represented both in terms of mean absolute 
power ramps and the coefficient of variation.  

• A sharp ramp up in wind power production fol-
lowed by a slightly more gradual, but still signif-
icant, ramp down, occurred with the passage of 
individual cold fronts despite the reduction in 
wind power variability through aggregation ef-
fects. The severity of this ramp-up ramp-down 
is dependent on the severity and location of the 
cold front in question.  

• A substantial increase in mean absolute ramp 
rate occurred when increasing the period under 
consideration from timescales of minutes to 
hours to days. This highlighted the importance 
of considering longer periods when studying 
and attempting to quantify the variability of 
wind power production with the passage of syn-
optic-scale weather systems. This is also of im-
portance to electricity network operators in 
terms of load scheduling and planning of short-
term maintenance in thermal power plants with 
the approach and onset of weather systems 
such as cold fronts.  

• The relatively small mean absolute ramp rate at 
the ten-minute timescale could result in a mas-
sive variation of total simulated capacity over 
the four-day simulation period (e.g. 5.49–
99.05% for the 25 August 2012 ‘uniform aggre- 
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gation’ simulation) with the passage of a cold 
front. This highlighted the importance of analys-
ing wind power variability at longer timescales.  

• Most large ramp events during the winter 
months considered, especially at longer time-
scales, are caused by the passage of cold fronts 
across South Africa. 
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