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Abstract 
Gathering quality wind speed data can be time-consuming and expensive. The present study established 
whether interval-deficient wind speed data could be rendered useful for wind power assessments. The effect of 
interval deficiency on the quality of the wind speed data was investigated by studying the behaviour of the 
Weibull scale and shape factors as the interval size between wind speed measurements increased. Five wind 
speed data sets obtained from the Southern African Universities Radiometric Network (Sauran) were analysed, 
based on a proposed procedure to find the true Weibull parameters from an interval-deficient wind speed data 
set. It was found that the relative errors in the Weibull parameters were, on average, less than 1%, compared 
with the Weibull parameters computed from a wind speed data set that complies with the IEC 61400-12-
1:2005(E) standard. This finding may contribute to time and cost reduction in wind power assessments. It may 
also promote the application of statistical methods in the renewable energy sector.  
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Highlights 
• Sauran data is used to test whether interval-deficient wind data is useful for wind power assessments. 
• Simulated interval-deficient wind speed datasets provide for better insight into the behaviour of Weibull 

parameters as interval size is increased. 
• A proposed statistical procedure was used to render interval-deficient wind data useful. 
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1. Introduction 
A recent comparative data study by Siepker and 
Harms (2017) in the Department of Mechanical and 
Mechatronic Engineering at Stellenbosch Univer-
sity has revealed that interval-deficient wind speed 
data that has been artificially synthesised can still 
provide meaningful information for wind power as-
sessments. The IEC 61400-12-1:2005(E) standard 
of the International Electrotechnical Commission 
sets the requirements for wind speed measure-
ments intended to be used in the power perfor-
mance evaluation of wind turbines. It states that 
wind speed data must be acquired continuously at 
a sampling rate of 1 Hz and that means, standard 
deviations, minima and maxima must be averaged 
and stored by a data acquisition system every ten 
minutes (Siepker and Harms, 2017). Wind data that 
does not adhere to this standard is referred to as in-
terval-deficient. Wind data sets that are acquired 
intermittently or continuously through mechanical 
anemometers with human interaction, or by using a 
data acquisition system served by anemometers 
that are not cup type (or incorrectly mounted), are 
also considered to be deficient. Empirical evidence 
by Siepker and Harms has shown that interval-defi-
cient wind data may still be useful in wind energy 
applications. There is a need, however, to delve 
deeper into the behaviour of interval-deficient wind 
data and to find a procedure to estimate the true 
Weibull parameters from an interval-deficient data 
set. Wind data sets of poor quality could be ren-
dered useful if the applicability of interval-deficient 
wind data can be confirmed. As extensive funding 
goes into the development of a wind farm, it is im-
portant to have a reliable understanding of the wind 

resource at a given site at a given time. Investors 
seek bankable results from viability studies before 
committing funds to wind energy projects. By in-
vestigating the relationship between the behaviour 
of the Weibull parameters and the sample size of 
the wind speed data set, a better understanding of 
the wind resource could be achieved. In some cases, 
interval-deficient data sets already exist for the spe-
cific location where a wind farm is planned. An ex-
ample of this is the wind data measurements that 
have been made at the Gobabeb Research and 
Training Centre in Gobabeb, Namibia, since the 
1940s. These data sets were acquired using me-
chanical devices such as a pressure plate wind indi-
cator as shown in Figure 1, which is non-compliant 
to the IEC 61400-12-1:2005(E) standard. It would 
be useful to have some statistical backing for using 
this interval-deficient wind data for wind power as-
sessments.  

Considering this, the objective of the present 
study was to present a statistical basis for the asser-
tion that sparse wind data, e.g., from pre-digital, his-
toric, or otherwise deficient collections, may have 
more value than generally thought. The approach 
used was, therefore, considered a further step to 
possibly unlock value from decades of already ex-
isting recorded wind data, which may, however, not 
comply with the latest international wind data 
measurement standards.  

1.1 Southern African Universities Radiometric 
Network 
Proper long-term solar radiation measurements 
are necessary to fully harness the exceptional solar 
resource in southern Africa. For many years there

 

Figure 1: A pressure plate wind indicator at the Gobabeb Research and Training Centre  
(Siepker and Harms, 2017). 
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has been no coordinated deployment of high-qual-
ity ground measurement stations in southern Africa 
(Brooks et al., 2015 – the source of much infor-
mation in this paragraph). Such a network is of cru-
cial importance to obtain an integrated solar re-
source assessment. Satellite models can be used to 
assess the solar resource, but ground measurement 
stations provide much higher accuracy (Brooks et 
al., 2015). The Southern African Universities Radio-
metric Network (Sauran) was established through 
the initiative of the Centre for Renewable and Sus-
tainable Energy Studies, Stellenbosch University 
and the Group for Solar Energy Thermodynamics at 
the University of KwaZulu-Natal. The aim of this in-
tegrated network of weather stations is to provide 
long-term solar radiation data for the deployment 
of solar energy technologies. The weather stations 
in the Sauran network can measure – besides solar 
radiation – air temperature, relative humidity, bar-
ometric pressure, rainfall and wind speed and di-
rection. For quality control purposes, Sauran data 
includes flags that are triggered whenever the time 
interval between successive measurements does 
not equal one minute. These flags are included as a 
‘1’ in the data file and are intended to warn the user 
about anomalies in the data set. The Sauran 
weather stations have research-grade secondary 
standard thermopile radiometers and the instru-
mentation used to measure and record meteorolog-
ical data, such as wind speed, is also of high quality. 
Instrumentation is properly maintained and 
cleaned regularly by staff from partner universities, 
and all Sauran stations are secured and powered by 
photovoltaic systems. This ensures continuity of 
operation. The first phase of Sauran includes 
weather stations at ten sites situated in a diverse 
range of climates, from desert to coastal sub-tropi-
cal. Further phases in the development of this net-
work expanded its reach to cover more regions 
across southern Africa. As of 2019 Sauran weather 
stations are located in South Africa, Namibia and 
Botswana. Data is provided at one-minute averaged 
intervals as well as hourly and daily time-averaged 
intervals. The wind data from the Sauran weather 
stations can be considered to comply with the IEC 
61400-12-1:2005(E) standard. The data obtained 
through the Sauran weather stations resides on the 
University of KwaZulu-Natal research server clus-
ter and is freely available to the public at 
www.sauran.ac.za. 

Although the website does not offer real-time 
data, time lags are usually less than ten hours. An-
other valuable resource of wind speed data is the 
Wind Atlas of South Africa (WASA) (Mortensen et 
al., 2014). WASA already yields high-level power 
densities and, therefore, the research described in 
this study made use of wind data from five Sauran 
weather stations, selected to provide a variety of  

geographical locations across southern Africa. The 
weather stations are: University of KwaZulu-Natal 
Howard College, USAid Namibian University of Sci-
ence and Technology, GIZ Richtersveld, GIZ Univer-
sity of the Free State, and USAid Venda. 

1.2 The Weibull distribution 
Weibull (1951) stated that the Weibull distribution 
may sometimes render good service. After years of 
experimentation and application, it became clear 
that the Weibull distribution had indeed a wide 
range of applications, especially in the aerospace in-
dustry (Abernethy, 1983). Justus et al. (1976) found 
that the Weibull distribution also gives the best de-
scription of the distribution of wind speed and their 
study focused on the wind resources at 135 sites 
across the United States of America. Although the 
Weibull distribution is commonly used in the wind 
energy sector, Drobinski and Coulais (2012) ques-
tioned whether it is the most suitable, given that it 
is based on empirical rather than theoretical justifi-
cation. This might lead to limitations in its applica-
tion to wind speed data, where it was shown that, in 
some locations that have a very high wind potential 
and wind anisotropy, the Weibull distribution could 
lead to a systematic underestimation of wind power 
of up to 12% (Drobinski and Coulais, 2012). Wind 
anisotropy refers to the phenomenon where the 
wind speed differs significantly in different direc-
tions. This phenomenon comes into play when 
modelling the wind speed components rather than 
the wind speed itself. The direction of the wind in 
the present study was not considered since wind 
turbine nacelles can rotate to face directly into the 
wind. With regards to the limits in application of the 
Weibull distribution: 
 

The objection has been stated that this distribu-
tion function has no theoretical basis. But in so 
far as the author understands, there are - with 
very few exceptions - the same objections 
against all other DF (density functions), applied 
to real populations from natural or biological 
fields, at least in so far as the theoretical basis 
has anything to do with the population in ques-
tion. Furthermore, it is utterly hopeless to ex-
pect a theoretical basis for distribution func-
tions of random variables. (Henderson and 
Cowles, 1970). 
 
Drobinski and Coulais (2012) found that a com-

bination of Rayleigh and Rice distributions gives ex-
cellent results for the modelling of wind speed and 
that the Weibull distribution is a convenient and 
powerful approach to modelling wind speed data. 
This study assumed that the Weibull distribution is 
best for the modelling of wind speed for wind 
power evaluation. It is, therefore, noted that extreme 

http://www.sau/


16    Journal of Energy in Southern Africa • Vol 30 No 4 • November 2019 

wind speed will not be considered, which would ne-
cessitate a different approach (Seguro and Lambert, 
2000).  

Weibull (1951) defined the Weibull distribution 
function as a cumulative distribution function 
(CDF). The Weibull PDF is obtained by taking the 
first derivative of the Weibull CDF. If 𝑋𝑋 is the varia-
ble describing all the individuals in a population, a 
distribution function for the individuals can be ex-
pressed by Equation 1 (Weibull, 1951). 

     𝐹𝐹(𝑥𝑥) = 1 − 𝑒𝑒−𝜑𝜑(𝑥𝑥)  (1) 

where 𝑥𝑥 specifies the value of any individual in a 
sample and the only necessary conditions the func-
tion needs to adhere to are to be positive, non-de-
creasing and vanishing at the value 𝑥𝑥0. The simplest 
function satisfying these conditions is given by 
Equation 2 (Weibull, 1951). 

     φ(𝑥𝑥) = (𝑥𝑥−𝑥𝑥0)𝑘𝑘

𝑥𝑥0
   (2) 

where 𝑥𝑥0 ≠ 0 and 𝑘𝑘 is the Weibull shape param-
eter. Substituting Equation 2 into Equation 1 
gives Equation 3, the Weibull cumulative distri-
bution function. 

     𝐹𝐹(𝑥𝑥) = 1 − 𝑒𝑒−
(𝑥𝑥−𝑥𝑥0)𝑘𝑘

𝑥𝑥0   (3) 

Experimental evidence showed that this 
mathematical expression fits observations 
(Weibull, 1951). By differentiating Equation 3 
with respect to 𝑥𝑥, the Weibull probability density 
function is given by Equation 4 (Siepker and 
Harms, 2017). 

     𝑓𝑓(𝑥𝑥) = �𝑘𝑘
𝐴𝐴
� �𝑥𝑥

𝐴𝐴
�
𝑘𝑘−1

𝑒𝑒−(𝑥𝑥𝐴𝐴)𝑘𝑘  (4) 

where 𝐴𝐴 is the scale parameter. 
Justus et al. (1976) found that more accurate es-

timates can be achieved by also considering the var-
iance of the wind speed about the mean. Before this, 
estimates of wind power potential were based only 
on the mean wind speed at a specific location. The 
Weibull scale factor is closely related to the mean 
wind speed and the shape factor is inversely related 
to the variance of the wind speed (Justus et al., 
1976). By studying the behaviour of the scale and 
shape factors, more accurate estimates for wind 
power potential can, therefore, be achieved. This 
behaviour was studied by considering wind speed 
data acquired through Sauran as well as from Stel-
lenbosch University’s Sonbesie weather station. 

2. Methodology 
The behaviour of the parameters A and k of the Wei- 

bull PDF was observed while the sample size of 
wind speed data was decreased. This was done ex-
perimentally in Matlab. It was important to con-
sider the autocorrelated nature of the wind data be-
cause the derivation of the maximum likelihood 
method, which was used to compute the estimates 
of the Weibull parameters, assumes that the data 
points are independent from each other (Ramirez 
and Carta, 2005). However, in their study of hourly 
wind speeds over a six-year period in the Canarian 
Archipelago, Ramirez and Carta (2005) found that 
the use of autocorrelated data does not significantly 
affect the shape of the Weibull probability density 
function. The data analysis for this study therefore 
proceeded with the autocorrelated wind speed 
data, using the fitdist function in Matlab to create a 
Weibull distribution object from which the Weibull 
scale and shape parameters were extracted. This 
Matlab function uses the maximum likelihood 
method to find the estimates of the Weibull param-
eters. This method was chosen based on Seguro and 
Lambert (2000), who compared methods for calcu-
lating Weibull parameters and found that the maxi-
mum likelihood method gives the most accurate re-
sults on time-series data when compared with 
known Weibull parameters. Furthermore, in con-
trast to the so-called ‘graphical method’ of finding 
the Weibull parameters, the maximum likelihood 
method is an iterative method, which makes it more 
suitable for computer-based analysis. It is also more 
robust than the graphical method since it is less se-
verely affected by external factors such as the bin 
size of the frequency distribution (Seguro and Lam-
bert, 2000). Finally, according to Scholz (2008), the 
maximum likelihood method has minimal variance.  

The present study considered wind data for 
2016, where the first entry in the data set was at 
12:00:00 AM, 01 January and the last entry at 
11:59:00 PM, 31 December. The first data set, ob-
tained from the Stellenbosch University Sonbesie 
weather station, had averaging intervals of one mi-
nute. Starting with the wind speed data set at one-
minute averaging intervals, entries within the data 
set were deleted to synthesise new data sets that 
had larger intervals between successive wind speed 
measurements. Even though entries within the data 
set were deleted, the resulting new sets were still 
spread out over the year to include measurements 
stretching from January 1 to December 31. Figure 2 
shows the decline in sample size (only samples 1 to 
54 are indicated, but the trend in decline continued 
until sample 720). 

The Weibull parameters were calculated for 
each data set and a scatter plot for each parameter, 
as a function of the interval deficiency of the data 
set, was drawn. The idea was to determine the point 
at which the Weibull parameters started to deviate 
significantly from standard behaviour. This would 



17    Journal of Energy in Southern Africa • Vol 30 No 4 • November 2019 

be the point at which the intervals between succes-
sive wind speed measurements became excessively 
enlarged. To further observe the behaviour of the 
Weibull parameters, the same analysis was done on 
five data sets obtained from the Sauran weather sta-
tions. Similar to the data from the Sonbesie weather 
station, the first entry in the data set was at 
12:00:00 AM, 01 January 2016 and the last entry at 
11:59:00 PM, 31 December 2016. For each weather 
station, the wind speed data set was used to synthe-
sise more data sets with increasing measurement 

interval. This was done in the same way as for the 
Stellenbosch University Sonbesie data. The Weibull 
parameters were calculated for each data set at 
each measurement station and plotted against in-
terval size. 
 

3. Results and discussion 
Observed behaviour of the Weibull parameters 
Figures 3 and 4 are the scatter plots of the Weibull 
parameters, A and k, as a function of interval size.

 

Figure 2: Sizes of synthesised wind speed samples. 

Figure 3: Scatter plot of Weibull parameter A as a function of interval size. 
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Figure 4: Scatter plot of Weibull parameter k as a function of interval size. 

Figure 5: Sampling distribution of Weibull 
parameter A. 

Figure 6: Sampling distribution of Weibull 
parameter k. 

 

From Figures 3 and 4 both parameters, A and k, 
spread out evenly below and above the first param-
eter value as the intervals in the data sets become 
larger. This suggests that the Weibull parameters 
could follow a normal distribution. Figures 5 and 6 
show that this is indeed the case. Even as the inter-
val size between wind speed measurements is in-
creased, the Weibull parameters are still normally 
distributed about the population mean. 

The normal distribution of the Weibull parame-
ters, as shown in Figures 5 and 6 is considered in 
more detail. For this study: 
• the population under consideration is the wind 

speed at a specific location; 

• the mean of the population, µ, has a fixed value 
(Underhill and Bradfield, 2013); 

• a sample would be wind speeds obtained at a 
specific sampling interval (one minute to 720 
minutes) and its corresponding Weibull param-
eters; 

• the sample mean, 𝑥̅𝑥, is not random since the 
wind speeds are autocorrelated; and 

• a sampling distribution is a probability distri-
bution of a statistic (Underhill and Bradfield, 
2013). 

 
Figures 5 and 6 show that the sampling distribu-

tions of the Weibull scale and shape parameters 
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were normal, even though the scale and shape pa-
rameters were derived from a Weibull distributed 
population (wind speed). This can be explained by 
the central limit theorem, which states that: 
 

If 𝑥̅𝑥 is the mean of a random sample of size n 
taken from a population with mean µ and fi-
nite variance 𝜎𝜎2, then the limiting form of the 
distribution of 

𝑍𝑍 =
𝑥̅𝑥 − µ

𝜎𝜎
√𝑛𝑛

 

as n → ∞, is a normal distribution (Walpole 
et al. 2016). 
 
Therefore, the sample mean has a normal distri-

bution. According to Underhill and Bradfield 
(2013), the sample mean will have a normal distri-
bution regardless of whether the population from 
which the sample has been extracted has a normal 
distribution or not. Underhill and Bradfield (2013) 
furthermore stated that it can be shown that the 
sample mean 𝑥̅𝑥 of a sample of 𝑛𝑛 observations from 
a population with mean µ and variance 𝜎𝜎2 has a 
mean of and a variance of 𝜎𝜎

2

𝑛𝑛
. 

Since the Weibull scale parameter is closely re-
lated to the mean wind speed and the Weibull shape 
factor is inversely related to the variance of the 
wind speed (Justus et al., 1976), the Weibull param-
eters seem to obey the central limit theorem. The 
biggest problem with this assertion is that the wind 
speeds are autocorrelated and that the sample 
mean, 𝑥̅𝑥, is therefore not random. It seems, how-
ever, that the process of computing the Weibull pa-
rameters diminishes the influence of autocorrela-
tion. This is in accordance with the finding by 
Ramirez and Carta (2005) that the autocorrelated 
nature of wind data does not significantly influence 
the shape of the Weibull distribution. 

A robust statistic is largely resistant to errors in 
the result when there is a deviation in the underly-
ing data set. In the present study, distributional ro-
bustness was of interest. According to Huber and 
Ronchetti (2009), distributional robustness mani-
fests when the shape of the true underlying distri-
bution deviates slightly from the assumed model. In 
the case of the present study, the reduction in the 
sample size of wind data measurements, by deleting 
elements within the data set, would lead to devia-
tion in the assumed model. The assumed model in 
this case is the set of wind speed measurements 
taken at averaging intervals of one minute. From 
the empirical analysis of the wind speed data, the 
question arises: Why is the Weibull distribution so 
robust with regards to sample size? An attempt was 
made to answer this question by a theoretical ap-
proach. 

It was shown that the calculated Weibull param-
eters follow a normal distribution (Figures 5 and 6) 
and that they seem to obey the central limit theo-
rem. This is an important result that may open pos-
sibilities for better understanding the robustness of 
the Weibull parameters. By grouping the Weibull 
scale parameter plotted in Figure 3 into seven sam-
ples, and plotting the distribution of the parameter, 
the parameter remains normally distributed in each 
sample. This is illustrated in Figure 7. It should be 
noted that the sample size for each set of wind 
speed measurements, from which the Weibull pa-
rameters are calculated, decreases from left to right 
in Figure 3 as well as Figure 7. Each sample of Wei-
bull scale parameters in Figure 8 therefore repre-
sents a median wind speed sample size, decreasing 
from left to right. The bottom part of Figure 8 gives 
the normal distributions for each sample of Weibull 
scale parameter. The location of one standard devi-
ation above and below the mean is also indicated in 
red on each normal distribution. The normal distri-
butions are rotated to better illustrate their relation 
to the plot of the Weibull scale parameter at the top 
of Figure 7. The median wind speed sample size is 
given as the heading of each normal distribution. 

From the normal distributions in Figure 7, the 
standard deviation moves further away from the 
sample mean as the wind speed sample size is de-
creased. Since the sampling distribution of the 
Weibull parameters is normal, the average of the 
means of the Weibull parameter samples will be 
equal to the population mean. The variance in sam-
ple mean is given by 𝜎𝜎

2

𝑛𝑛
 and the standard deviation 

in sample mean is thus given by 𝑠𝑠𝑡𝑡𝑑𝑑 = 𝜎𝜎
√𝑛𝑛

. A small 
sample of wind speeds will therefore give a large 
variation in Weibull parameter means, while a large 
sample of wind speed measurements will give a 
smaller variation in Weibull parameter means. The 
behaviour of the standard deviation as a function of 
sample size, 𝑛𝑛, could, therefore, be a reasonable way 
to model the reaction of the Weibull parameters to 
interval deficiencies in the wind speed data. 

3.2 Modelling the Weibull parameter behaviour 
The behaviour of the Weibull parameters as a 
function of sample size was modelled by propos-
ing equations that provide an envelope efficiently 
encapsulating all the Weibull parameters. 

The behaviour of the Weibull parameters was 
modelled analogous to the equation for the 
standard deviation, but by incorporating arbi-
trary constants 𝐶𝐶 and 𝐷𝐷 in the respective Equa-
tions 5 and 6, given that the standard deviation 
may be an effective mechanism to model the be-
haviour of the Weibull scale and shape parame-
ters as the wind speed sample size is decreased. 
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     𝐴𝐴 = 𝐴𝐴0 ± 𝐶𝐶 1
√𝑛𝑛

 (5) 

     𝑘𝑘 = 𝑘𝑘0 ± 𝐷𝐷 1
√𝑛𝑛

 (6) 

The constants should serve as scaling factors to 
account for the effect of the autocorrelation, while 
𝐷𝐷 also accounts for the effect that the value of para- 

meter 𝐴𝐴 has on the value of parameter 𝑘𝑘. The 𝐴𝐴0 and 
𝑘𝑘0 are the values for the scale and shape parameters 
obtained using wind speed data complying with the 
IEC 61400-12-1:2005(E) standard. Figures 8 and 9 
show the envelopes to the Weibull parameters cre-
ated by plotting Equations 5  and 6. These enve-
lopes serve to illustrate the symmetric behaviour of 
the Weibull parameters. 

Figure 8: Envelope to Weibull scale parameter, where A is the envelope to the Weibull scale 
parameter, A0 is the value of the scale parameter obtained using wind speed data complying with 

the IEC 61400-12-1:2005(E) standard, and n is the wind speed sample size. 

Figure 2: Envelope to Weibull shape parameter, where k is the envelope to the Weibull shape 
parameter, k0 is the value of the shape parameter obtained using wind speed data complying with 

the IEC 61400-12-1:2005(E) standard, and n is the wind speed sample size. 
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Figure 10: Proposed algorithm for finding the true Weibull parameters from an  
interval-deficient wind data set. The Chi-squared test is used to determine whether the  

data follows the Weibull distribution.  

3.3 Algorithm for obtaining true values of the 
Weibull parameters 
As the wind speed sample size is decreased by in-
creasing the interval size between wind speed 
measurements, the computed Weibull parameters 
spread out evenly above and below a central value, 
i.e., the value of the Weibull parameter computed by 
using a data set that complies with the IEC 61400-
12-1:2005(E) standard. 

The symmetric behaviour of the Weibull param-
eters offers a way of determining valid Weibull pa-
rameters from an interval-deficient data set, con-
sistent with the main objectives of this study. Figure 
10 illustrates the proposed procedure representing 
an algorithm. 

This algorithm was examined by analysing the 
wind speed data from five Sauran weather stations. 
The plots for the Weibull parameters from the Uni- 

versity of KwaZulu-Natal Howard College (KZH) 
weather station data is shown in Figures 11 
and 12. 

The y-intercepts in Figures 11 and 12  are respec-
tively expressed as 𝐴𝐴𝑦𝑦−𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖 = 1.6452 𝑚𝑚. 𝑠𝑠−1 and 
𝑘𝑘𝑦𝑦−𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖 = 0.5384 and the means are 
𝐴𝐴𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚 = 1.5615 𝑚𝑚. 𝑠𝑠−1 and 𝑘𝑘𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚 = 0.5418 𝑚𝑚. 𝑠𝑠−1. 
The values for the estimated true Weibull scale and 
shape parameters of the wind speed at all of the five 
Sauran weather stations are summarised in Tables 
1 and 2. 

A0 is the value of the scale parameter computed 
by using a data set that complies with the IEC 
61400-12-1:2005(E) standard, Ay-intercept is the scale 
parameter found from the y-intercept of the regres-
sion equation, and Amean is the mean of the scale pa-
rameters computed from all interval deficient data 
sets.  
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Figure 11: Finding the true scale parameter from interval-deficient wind data.  
The regression equation gives the relationship between the scale parameter (y)  

and the interval between readings (x). 

Figure 12: Finding the true shape parameter from interval-deficient wind data.  
The regression equation gives the relationship between the shape parameter (y)  

and the interval between readings (x). 

 Table 1: Values for the Weibull scale parameter at different Sauran weather stations. 
Weather station 𝐴𝐴0 (𝑚𝑚. 𝑠𝑠−1) 𝐴𝐴𝑦𝑦−𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖  (𝑚𝑚. 𝑠𝑠−1) 𝐴𝐴𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚  (𝑚𝑚. 𝑠𝑠−1) 

KZH 1.6465 1.6452 1.6514 
NUST 1.8708 1.8826 1.8622 
RVD 4.8213 4.8283 4.8188 
UFS 2.9487 2.9495 2.9503 
UNV 2.2324 2.2101 2.2450 

KZH = University of KwaZulu-Natal Howard College, NUST = Namibian University of Science and 
Technology, RVD = Richtersveld, UFS = University of the Free State, UNV = University of Venda 
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Table 2: Values for the Weibull shape parameter at different Sauran weather stations. 
Weather station 𝑘𝑘0 (𝑚𝑚. 𝑠𝑠−1) 𝑘𝑘𝑦𝑦−𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖  (𝑚𝑚. 𝑠𝑠−1) 𝑘𝑘𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚  (𝑚𝑚. 𝑠𝑠−1) 

KZH 0.5399 0.5384 0.5418 
NUST 1.1637 1.1936 1.1568 
RVD 1.3558 1.3573 1.3561 
UFS 1.5687 1.5653 1.5700 
UNV 1.4305 1.4347 1.4758 

KZH = University of KwaZulu-Natal Howard College, NUST = Namibian University of Science and 
Technology, RVD = Richtersveld, UFS = University of the Free State, UNV = University of Venda 

Table 3: Relative error in the estimated true Weibull parameters. 
Weather station Error in scale parameter (%) Error in shape parameter (%) 

 𝐴𝐴𝑦𝑦−𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖  𝐴𝐴𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚 𝑘𝑘𝑦𝑦−𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖  𝑘𝑘𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚  
KZH 0.079 0.298 0.278 0.352 

NUST 0.631 0.460 2.569 0.593 
RVD 0.145 0.052 0.111 0.022 
UFS 0.027 0.054 0.217 0.083 
UNV 0.999 0.564 0.294 3.167 

Average error (%) 0.376 0.286 0.694 0.843 
KZH = University of KwaZulu-Natal Howard College, NUST = Namibian University of Science and  
Technology, RVD = Richtersveld, UFS = University of the Free State, UNV = University of Venda 

 
The relative error in the parameter estimates is 

compared with 𝐴𝐴0 and 𝑘𝑘0 in Table 3. 
The procedure to determine the true values of 

the Weibull parameters from an interval-deficient 
wind speed data set, as presented in Figure 10, de-
livered encouraging results (Table 3). The proce-
dure was based on the observed phenomenon that 
the Weibull parameters spread out evenly above 
and below a central value. It is due to this phenom-
enon that the y-intercept of a linear regression to 
the Weibull parameters, as a function of sample 
size, approximates the true values of the shape and 
scale parameters. It should be noted that an approx-
imation of the true Weibull parameters was also ob-
tained by taking the mean of the parameter values. 
From Table 3, the average error in both the scale 
and shape parameter is less than 1%. For finding 
the true scale parameter, computing the mean in-
stead of taking the y-intercept resulted in a slightly 
smaller error in the parameter value. However, for 
calculating the shape parameter, the y-intercept of 
the regression line gave a more accurate parameter 
value. The reason behind the symmetric behaviour 
of the Weibull parameters has not been investi-
gated in this study.  

4. Conclusions 
It was found that the sampling distributions of the 
Weibull parameters are normal and an attempt was 
made to explain this by using the central limit theo- 

rem. By analogy to the equations for the standard 
deviation, equations were proposed to model the 
extreme values of the Weibull parameters as the 
wind speed sample size is decreased. It was found 
that by scaling these equations by choosing appro-
priate values for their scaling constants, envelopes 
to the Weibull parameters are produced. These en-
velopes give some theoretical backing to the exper-
imentally observed symmetric behaviour of the 
Weibull parameters. Based on this symmetric be-
haviour, a procedure was proposed to find the true 
Weibull parameters from an interval-deficient wind 
speed data set. This procedure was tested on wind 
speed data from five Sauran weather stations and it 
was found that the relative errors in the Weibull pa-
rameters were corroborated by the values com-
puted from a wind data set that complies with the 
IEC 61400-12-1:2005(E) standard, were on aver-
age less than 1%. 
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