
Abstract
This study addresses two key objectives using operational performance data from most of the Round 1 wind
farms connected to the grid in South Africa: benchmarking of wind farm performance and validation of the
pre-construction energy yield assessments. These wind farms were found to perform in line with internation-
ally reported levels of wind farm availability, with a mean energy-based availability of 97.8% during the first
two years of operation. The pre-construction yield assessments used for financing in 2012 were found to
over-predict project yield (P50) by 4.9%. This was consistent with other validation studies for Europe and
North America. It was also noted that all projects exceed the pre-construction P90 estimate. The reasons for
this discrepancy were identified, with the largest cause of error being wind flow and wake-modelling errors.
Following a reassessment using up to date methodologies from 2018, the mean bias in pre-construction pre-
dictions was 1.4%. 
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Highlights
• Operational wind farms in South Africa compared to preconstruction predictions.
• Energy yield assessments in 2012 averaged 4.9% over-prediction.
• Largest causes of bias wake modelling and long-term windspeed adjustment.
• Modern techniques significantly improve prediction accuracy.
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1. Introduction
Modern wind resource assessment methodologies
and approaches have primarily been developed
based on experience and assumptions from wind
farms in north-west European countries which were
the early adopters of wind energy. These models
have been modified and adjusted over time to bet-
ter account for the increasing global spread of wind
energy and challenges represented in different cli-
mates and geographies. The process of predicting
the wind resource and energy yield of a wind farm
is continually evolving, with no encompassing stan-
dard global approach [1, 2], recognising that an
international standard IEC 61400-15 is currently
under development. Each practitioner will follow
subtly different approaches as the industry refines
these estimates over time. While no two wind
resource analyses will ever be identical, because of
different approaches taken, there are some interna-
tional standards [3, 4] and many agreed best prac-
tices. The effect is that results typically converge,
despite differences in methodology. 

The South African wind industry is relatively
young when compared with the home of the wind
resource models in Europe, as large-scale deploy-
ment of wind energy only became part of govern-
ment policy in 2010. This wave of deployments
began with South Africa’s Integrated Resource Plan
[1] and the establishment of the Renewable Energy
Independent Power Producers Procurement
Programme, which set out the mechanism for con-
nection of wind power to the grid. Since then, 25
wind farms have been founded, with a combined
capacity of over 2.4 GW connected to the grid [2].

1.1 Wind resource assessment
To assess the value of a proposed wind farm, a
detailed understanding of the site’s wind resource is
needed. The financial model of the project, which

will determine project profitability and viability, is
heavily dependent on the revenue generated.
Revenue is directly proportional to the amount of
energy that can be produced and sold. Energy pro-
duced by a wind turbine comes from the wind;
hence the need for a wind resource assessment.
This assessment is typically broken down into the
following steps:
• on-site measured data analysis;
• long-term wind resource assessment;
• wind flow modelling;
• loss assessment; and
• uncertainty assessment.

1.2 Validation studies
Wind resource assessment is a field of engineering
that has been evolving rapidly over the last three
decades. There have been several previous valida-
tions of the accuracy of individual sections and
complete wind resource assessments, which then
feed into industry best practice. Some validations
have been undertaken by individual companies,
others through collaborative comparison exercises
across the industry. A summary of these studies is
given in Table 1.

Of particular interest is the first of these studies
[1], which demonstrated that approaches a decade
ago resulted in significant over-predictions in yield.
Following this study several conclusions were
reached, which led to a significant improvement in
the accuracy of the industry as a whole. These
included:
• more careful assessment of representative long-

term reference sources (avoiding inclusion of
outlier years);

• a more critical assessment of achievable avail-
ability levels;

• better mounting of wind measurement masts
including avoidance of ‘stub-mounting’; and
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Table 1: Summary of wind resource validation studies performed to date.

Author Year No. of wind Geographical Resulting bias in yield
farms assessed spread

Garrad Hassan 2007 156 Europe and Pre-construction assessments achieve 
[3] North America on average 93.3% of prediction

DEWI [3] 2008 97 Germany 43% of projects within +/-5% of oper- 
ational performance; mean of 94%

DNV-GL [4] 2015 25 UK Offshore Mean = 92%; median = 95%
DTU [5] 2015 1 UK offshore wind farm 4% over-prediction (spread across

consultancies of 3%)
Vaisala [6] 2015 30 Asia, Europe and USA 0.1% under-prediction
Natural Power [7] 2015 Not reported Europe and USA 1.1%
DEWI [8] 2016 46 Germany, France 39% within +/- 5% of operational 

and Taiwan performance. 22% significantly 
over-estimate energy yields.

DNV-GL [9] 2017 281 North America 2% over-prediction
DTU = Danmarks Tekniske Universitet, USA = United States of America, UK = United Kingdom



• investigation of power performance in complex
terrain.

The validation studies performed to date have a
very strong bias towards European and North
American conditions. It is noted within these studies
that, across these two regions, there are significant
differences in model accuracy because of the differ-
ing climates and also the weighting of the different
steps within an energy yield assessment. It is there-
fore reasonable to consider that predictions in
South Africa may also differ in accuracy to the val-
idation studies presented.

All the projects connected to the grid to-date
have been assessed in some form or another on the
north-western European assumption and wind
resource models, most notably the flow model
WAsP. This study is intended to address one of the
key limitations of these models: the lack of valida-
tion in South Africa. It will be the first to focus
specifically on wind farms in South Africa, and the
lessons learned will be compared with findings from
the other studies where appropriate.

1.3 Operational yield assessment
It is necessary to have data from operational wind
farms to perform a validation of pre-construction
energy yield assessments. The present study gained
access to data from six of eight of the first wind
farms in South Africa (from Round 1). Analysis of
the operational data itself is not a simple task and
typically includes the following steps:
• data processing;
• data tagging and cleaning;
• generation of idealised performance power-

curves;
• long-term wind resource assessment;
• loss assessment; and
• uncertainty assessment.

These are required to generate a robust under-
standing of the true performance of a project. Each
operational yield assessment is only as accurate as
the raw data provided and as such there are differ-
ences in the accuracy of the results depending on
the quantity, resolution and accuracy of the data
that has been provided. Operational yield assess-
ments are still subject to some levels of uncertainty,
although this level should be significantly reduced
when compared with pre-construction estimates as
many of the pre-construction assumptions are no
longer applicable, e.g., wind-flow modelling uncer-
tainty or wind turbine performance.

1.4 The need for these studies
To date no validation of wind resource assessment
approaches has been undertaken in South Africa;
the methodology and assumptions made are there-
fore unproven in this market. By performing a

detailed study of the first wind farms built in the
country it will be possible to evaluate, refine and
improve confidence in future energy yield assess-
ments: 
• owners of wind farms can benchmark their pro-

ject performance; 
• investors in wind farms in South Africa will

have increased confidence in the energy yield
predictions; and

• wind resource consultants and academia can
improve on wind resource assessment
approaches to better refine their models and
calculations.

The results of this study, while directly applicable
to wind farms in South Africa, will also be of high
relevance to those in other similar markets. The cli-
mate in some regions of the United States and
Australia is very similar, and many of the lessons
learned with respect to assumptions in new markets
will be applicable to other regions of Africa as these
increase their deployments of wind energy.

1.5 Summary of objectives
The following objectives for this study have

been set to meet the aims:
• benchmarking of each wind farm by key oper-

ational parameters; and
• validation of the pre-construction Forecast

Energy Sales Reports for each project including
identification of causes of errors in predictions.
This will include assessment of:

- wind farm availability assumptions;
- long-term wind resource;
- turbine performance; and
- wind flow modelling.

2. Methodology
2.1 Input data
Operational performance data and pre-construction
energy yield assessments were available for six wind
farms in South Africa, including a total count of 244
wind turbines being analysed. The location and
data available from each wind farm is shown in
Table 2 and Figure 1.

For each site the following information was pro-
vided:
• re-construction energy yield assessment; and
• Supervisory control and data acquisition

(SCADA) data including:
- power production;
- wind speed;
- pitch angles; 
- rotor RPM; and
- generator RPM.

In addition, for some sites, monthly operator
reports and metered data from the on-site substa-
tion were provided.
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The pre-construction energy yield reports were
undertaken by four different consultancies, all of
which provide international bankable standard
assessments. Within the bid process each of these
assessments was reviewed by an independent third
party.

Throughout this assessment, all commercially
sensitive data was anonymised. Each wind farm
was assigned a number for a specific test. All other
plots contain subsets of data for illustrative purposes
to avoid identification of a specific project, e.g.,
plots contain eight turbines and could, therefore, be
from any of the projects.

2.2 Operational yield assessment
2.2.1 SCADA data processing
The raw ten-minute SCADA data provided came in
a variety of formats, particular to the different wind
turbine manufacturers. All data was provided in
either Microsoft Excel (.csv) or Microsoft Access
(.mdb) files, although the file structure of each site
differed. These files were manipulated into a stan-
dard format before being imported into the special-
ist SCADA assessment software (SIFT) [2].

It was considered that, following a review of the
data, all the sites were of good quality, with overall
data recovery above 93.5%.

2.2.2 Production normalisation
Thorough checks were carried out to remove any
invalid data and isolate data points where the wind

turbines are considered unavailable and/or under-
going performance issues such as power de-rating.
The resulting cleaned dataset was considered repre-
sentative of normal operation. The ten-minute data
is categorised using the groupings in Table 3.

Table 3: Categories of operational behaviour.

Grouping Definition
Invalid data Erroneous or missing readings
Unavailability When the turbine is not operating,

e.g., because of maintenance
De-rating When the turbine is curtailed at 

higher wind speeds to reduce 
overall power production, often 
used when an export limit is 
imposed on the project

Sub-optimal When the turbine is operating 
performance outside normal operation
Normal When the turbine is operating as
operation expected

The energy production observed by the SCADA
data was then normalised to 100% data recovery
monthly – assuming that the production during the
period of missing data is proportional to that of the
periods when the data is available within the
month. This was followed by normalisation to
100% energy-based availability that accounted for
periods of unavailability, power de-rating and other
operational issues. The normalised production was
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Table 2: Round 1 wind farms (wind farms in italics not included).

Wind farm Number of turbines Turbine rating (MW) Time period of SCADA data available
Cookhouse 66 2.1 December 2014 - September 2018
Dassiesklip 9 3.0 Not available
Dorper 40 2.5 July 2016 – May 2018
Hopefield 37 1.8 February 2014 - September 2018
Jeffrey’s Bay 60 2.5 December 2013 – November 2017
Kouga 32 2.5 December 2015 – August 2018
Noblesfontein 41 1.8 Not available
Van Stadens 9 3.0 August 2014 – October 2016
SCADA = Supervisory control and data acquisition

Figure 1: Location of Round 1 wind farms.



what could be expected should the wind turbine be
operating without any faults or shutdowns and
allowed the evaluation of the time- and energy-
based availability.

2.2.3 Long-term energy yield assessment
Following the analysis of the short-term data, a
long-term correction was carried out via a measure-
correlate-predict (MCP) methodology [3]. A series
of reference datasets was obtained and analysed,
including data from ground meteorological stations
and various mesoscale and reanalysis sources. The
most suitable dataset selected using a variety of
metrics [17, 18, 19], for use in a long-term correla-
tion, was chosen from the following datasets for
each farm:
• MERRA2 [13];
• ERA5 [14];
• ERA-Interim [15]; and
• nearby ground stations.

Monthly productions were converted to daily
averaged productions of each month before corre-
lation to account for the varying number of days in
a month. All MCPs were carried out using a linear
regression fit on a seasonally balanced concurrent
period and a historic reference period from April
2005 to April 2018. In all cases the strength of the
correlation (R2) was above 0.8. This process pro-
duced a long-term idealised per-turbine production. 

2.3 Validation of pre-construction energy
yield assessment
The operational yield assessment allows for a direct
comparison of gross-production with that from the
pre-construction wind resource assessment (some-
times given as gross yield after wakes). Comparison
of these two figures highlights any bias related to
modelling approaches undertaken pre-construction
(including wind speed bias, flow modelling, wakes
and turbine performance).

2.3.1 Wind farm availability
Wind farm availability during the operational peri-
od is categorised and quantified in Section 3.2.2. A
direct comparison with the assumed figure within
the pre-construction yield assessment is therefore
possible. It should be noted that the observed esti-
mate is not necessarily representative of the long-
term value (as availability over time is considered
likely to decrease as the wind turbines degrade) and
therefore this is taken into consideration within the
comparison.

2.3.2 Electrical loss assumptions
A comparison of the readings from the on-site meter
at the grid connection point and the value recorded
by each wind turbine allows for derivation of the
electrical loss (from turbine to substation). This was

obtained through a plot of SCADA against metered
yield per-month, with the slope of the trendline giv-
ing the electrical loss. This figure is found to be very
stable, with a very high correlation coefficient,
which is in-line with experience. Months in which
data recovery was below 80% for either SCADA or
export meter were excluded in order to avoid spuri-
ous comparisons between substantially non-over-
lapping time periods.

2.3.3 Wind turbine performance
Wind turbine performance is currently the subject of
much industry investigation as it is known to vary
significantly, subject to local conditions. Accounting
for turbine performance was not typically done
within pre-construction assessments in 2012, but
has since become a common practice [23, 24]. This
accounts for the difference between the conditions
under which the power curve was derived (benign
wind flow with standard wind shear and turbulence)
and conditions on individual wind farms. Power
curve performance tests have been undertaken for
several of the turbines within the sites and these
have been provided to give an understanding of the
true performance. It is considered likely that the tur-
bines in general may underperform the pre-con-
struction power curves because of the relatively low
turbulence (and hence lower energy in the wind) of
the Round 1 wind farms. However, unless this has
been specifically measured, it has not been attribut-
ed within this category. It has also been possible to
identify sub-optimal performance based on the
SCADA data as detailed in Section 3.2.2. These
have been considered within the assessment.

2.3.4 Long-term wind resource
One feature of early pre-construction assessments
in South Africa was that they did not include long-
term adjustment of the on-site measured data, as
the long-term data available was severely limited.
Many Round 1 wind farms had no nearby reference
station, or stations that were of insufficient quality.
The long-term pre-construction assessment was
therefore based purely on a short-term measured
wind speed from on-site measurements. This is one
source of bias within the assessment. To quantify
the bias, it is possible to use the same long-term
approach as outlined in Section 2.2.3, simply
applied to the period of on-site measurements. This
has been done on a per-site basis, based on the
information provided within each respective pre-
construction assessment. To maintain consistency,
the same long-term reference source as selected in
Section 2.2.3 was used.

2.3.5 Wind flow modelling errors
The accuracy of the wind flow model was calculat-
ed by comparing predicted and observed per-tur-
bine yields. A simple correlation was performed to
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gain a broad idea of how well the model was per-
forming. More detailed evaluation and quantifica-
tion is carried out by assessing the pattern of pro-
duction across the wind farm. In many cases, a tur-
bine is situated at the same location as a pre-con-
struction mast, and in these situations it is possible
to normalise all site production against this turbine
location. This relies on a fair assumption that there
is no flow modelling error at a turbine, at the mast
location, which would hold true if there were little
wake effect on this location. Correlating these nor-
malised productions can be used to identify a bias
in the wind flow model, e.g., whether the flow
model under- or over-predicts change in yield. The
errors in the wind flow model have also been plot-
ted against various other variables to check their
dependence. These include:
• distance to the flow model initiation mast;
• change in elevation from the mast;
• change in wind speed from the mast;
• deltaRIX – a measure of terrain complexity;
• wake loss; and
• a map of the errors at each turbine location, to

ensure that any other spatial variations are con-
sidered.

Wake model errors were isolated, where possi-
ble, by considering rows of turbines and normalis-
ing production against a wake-free turbine location.
The error in the production was analysed with ref-
erence to the number of rows in the upwind direc-
tion: a pattern of increasing error with depth into
the array was interpreted as indication of wake
modelling error.

2.3.6 Improvements to the flow model
The comparison and any bias within the pre-con-
struction assessments was, so far within the analy-
sis, based on the methodology at the time of writing
the assessment (typically 2011 or 2012). Wind flow
modelling approaches since this time have evolved
through ongoing research and development efforts.
Original pre-construction estimates were re-run
using the latest assumptions and approaches to
understand the accuracy of current modelling
approaches. Changes included:
• investigation of the impact of the latest wind

flow models (now WAsP version 12);
• investigation into the impact of diurnal wind

shear;
• investigation of the impact of the latest wake

modelling techniques which include an account
for varying wake decay constants; and

• application of up to date loss assumptions for
South Africa.

These results allow for identifying which areas of
bias were already fixed and whether additional
work was required to bring the pre-construction

assessments in-line with observed performance.
The impact of changes in the vertical extrapolation
(wind shear) approach could be evaluated because
of the characteristics of the sites investigated. The
vertical extrapolation for all sites but one was 10 m
or less, so any errors were likely to be undetectable.
This is unlikely to be the case for newer projects as
wind turbine hub heights have increased significant-
ly in recent years, with many sites having extrapola-
tion heights of up to 40 m. 

2.3.7 Other errors
This category was included as it may be possible to
identify other errors or differences within the assess-
ments. However, attributing these to the categories
above was not possible because of the information
and confidence within the assessments. This
remainder may be the result of a specific other
issue, e.g., observed wind turbine degradation.
Alternatively, it may be a result of one of the other
categories, but one that was not possible to specifi-
cally isolate within this assessment.

3. Results
3.1 Yield
The pre-construction predictions from 2012 in gen-
eral over-predicted energy yield by 4.9%. A per-site
(anonymised) breakdown of the operational energy
yield (P50) was compared with each project’s pre-
construction P50 and P90 in Figure 2. These results
were all normalised so that 100% represented the
pre-construction estimate and the P90 value was
again normalised for direct comparison on a per-
site basis. All pre-construction assessments over-
predicted yield, with all sites exceeding their pre-
construction P90 estimate. From the analysis per-
formed, it was possible to identify the causes of dis-
crepancies between the pre-construction assess-
ments and the operational yield. A breakdown of
the contribution of each cause (mean) of errors is
shown in Figure 3. The mean absolute error is given
in Figure 4. These are discussed further in Sections
3.2 to 3.7.

3.2 Loss assumptions
The pre-construction loss assumptions from 2012
resulted in an average under-prediction of the net
yield by 1.2%. When the impact of this conser-
vatism was removed, the overall model bias was
increased for 2012 assessments. It should be noted
that this bias was not consistent across all sites and
the magnitude varied significantly (from 0.0% to
5.3%). A breakdown of the mean assumption per
loss category is given in Table 4. Also included are
the observed value and 2018 typical values. 

The 2018 values represent long-term assump-
tions as commonly used in the industry. The mea-
sured values for grid are also heavily biased by one
project – this should be assessed on a site by site
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basis. Electrical loss varies widely between sites
based on parameters such as total project size and
density; the loss should therefore be based on a site-
specific assessment and no value is assumed suit-
able for general use.

Table 4: Comparison of loss assumptions with
measured values.

Loss Mean 2012 Measured 2018 
category value (%) value (%) value* (%)
Wind turbine 96.1 97.6 97.0
availability

Balance of 99.8 99.8 99.8
plant availability
Grid availability 98.7 99.2 99.8
Electrical loss 97.4 97.9 *
*See comment in Section 3.2

3.3 Wind turbine performance
Comparison of the measured power curve with that
assumed within the pre-construction assessment
demonstrated a consistent over-prediction of yields
pre-construction, which was expected as detailed in
Section 3.3.3. The range of results was from 0.7%
to 3.9%, although this was considered to have
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Figure 2: Plot of per-wind farm long-term operational yield (blue bar) against 
pre-construction P50 (black line), P90 (red line) and P10 (green line).

Figure 3: Waterfall plot showing the mean contribution of errors, from pre-construction 
assessment in 2012 to one performed in 2018. The black line (100%) represents long-term

operational performance.

Figure 4: Breakdown of main causes of error
within the analysis.



potential to increase if additional analysis into site-
specific turbine performance loss is undertaken.
The mean of the pre-construction estimates was
99.8%, compared to 98.5% from the measured
data. One wind farm reported very high levels of
turbine under-performance (>3%), which was not
possible to investigate in additional detail within this
study, while for most sites the wind turbine perfor-
mance was within normal bounds.

3.4 Long-term wind resource
Following a long-term correction, the average wind
speed across the fleet of wind farms during the
operational period to date was 99.2% of the long-
term average. Wind speeds in the future are there-
fore anticipated to be 0.8% higher. The variations
across the sites were relatively low (future predic-
tions ranging from -0.2% to +2.2% of the recorded
period). All the pre-construction predictions from
2012 considered that a long-term adjustment using
off-site data would not increase the confidence
within the long-term resource assessment. Using the
latest methodology, the results demonstrated that
this led to significant bias within the assessments.
The range of long-term bias introduced was
between a 3.9% over-prediction to a 3.8% under-
prediction of wind speed, which would have result-
ed in significant errors introduced within the mod-
els. The mean absolute error was 1.9% across the
sites. Figure 3 does not show this as a significant
factor overall as the wind speed adjustment errors
across the fleet cancelled each other out, with some
sites experiencing above-average wind speeds and
others below-average.

3.5 Wind flow modelling errors
This is identified as the biggest cause of discrepancy
with the pre-construction predictions, with a mean
absolute error of 5.2%. It was found to be the most

consistent across the different sites (ranging from
3.5% to 7.3%). This was investigated on a site-by-
site basis. To protect the anonymity of the sites only
limited details can be presented here. Two examples
of the investigations are given in Figures 5 and 6.
These results are a subset of the wind farms (there
are no wind farms with only eight turbines) so the
results could be from any project. Figure 5 shows
the variation of yield through the wind farm. All tur-
bines were normalised against the wind turbine
considered to be closest to freestream. This showed
that the pattern was similar, although the magnitude
of the variation was underestimated within the flow
model, resulting in an overall over-estimation of
project yields.

Figure 6 shows the variation of performance
where each turbine is associated with the most rep-
resentative mast (undertaken within the pre-con-
struction assessment). Within each cluster the yield
was normalised against a turbine at the approxi-
mate mast location. A fit with a slope equal to one
would indicate a site where the model predicts the
magnitude of change well. Within the example site,
Figure 6 illustrates that the wind flow model is per-
forming well with the slope between operational
performance and predicted performance of 0.9929.
Coastal sites appear to experience significantly
higher wind flow modelling errors than those
inland, which can be attributed to three main fac-
tors:
• wake modelling: these sites’ wake model results

are significantly poorer than those inland;
• wind flow model: from site specific investiga-

tions, the wind climate varies significantly
across the site because of the step change in
external conditions; and

• wind turbine performance: the flow conditions
coastally are poorly understood, and it is there-
fore anticipated that there may be higher levels
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Figure 5: Pattern of production for a subset of one-site (anonymised).



of turbine performance loss than would be typ-
ically calculated. The power performance test
results provided support this conclusion of high
impact and variability.

3.6 Improvements to the flow model
It was found that, following the recalculation of pre-
construction assessment with newer methods, there
was a significant improvement in the yield predic-
tions. Figure 7 shows the change in yield caused by
the different adjustments of methodology. 

This allowed for comparison of 2018 pre-con-
struction yield predictions with the operational
yield. The 2018 pre-construction assessments
resulted in an overall over-prediction of 1.4%, a sig-
nificant improvement on the result presented in
Section 4.1 for 2012 (4.9%). The value is also in
line with international validation studies from 2017
as detailed in Table 1. Figure 8 shows that the
spread of results from 2018 assessments was also
lower. While this study did not focus on the overall

uncertainty, results suggested that the improved
accuracy in 2018 was also more repeatable.

3.7 Other errors
After the errors above were attributed to specific
causes there was a remainder on many sites. This
was likely caused by one of the reasons discussed in
Sections 3.2-3.6, but it was not possible to cate-
gorise or isolate the cause. All the analysis is subject
to limitations and uncertainty and therefore this
remainder also represents the confidence in the
analysis.

4. Conclusions
When comparing the overall bias in the pre-con-
struction predictions from 2012 (over-prediction of
4.9%) to other validation studies (Table 1) it can be
seen that these results are in line with what would
be expected at that time. Assessments made in
2018 are a significant improvement on those from
2012 (Figure 8). There remains a small bias within
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Figure 6: Pattern of production per-turbine normalised against wind turbine closest to the mast.

Figure 7: Plot showing magnitude of energy yield change caused by changes within the 
wind flow model between 2012 and 2018.



the sample studied (over-prediction of 1.4%)
although with a reduced spread, suggesting that the
improved accuracy is also more repeatable.

The primary causes of bias, and an estimate of
the magnitude of error from this cause, are:
• loss assumptions (0.1 to 5.0%) detailed further

in Table 4;
• turbine performance losses (1 to 4%);
• long-term wind speed adjustment (0.2 to

3.9%);
• wind flow modelling error (0.9%);
• wake modelling error (0.6 to 5.7%); and
• coastal site modelling: coastal sites performed

significantly worse than those inland (details
cannot be provided to protect anonymity). The
impact of coastal effects is considered to be a
large contributor to the ‘other’ category of dis-
crepancies (potentially in the order of 5%).
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Figure 8: Performance of pre-construction
assessments against operational performance.


