Integration of waste heat in thermal desalination technologies: A review
DOI:
https://doi.org/10.17159/2413-3051/2022/v33i1a5434Abstract
Desalination is increasingly becoming a crucial method for providing fresh water globally. However, most of the desalination technologies are energy-intensive and driven by fossil fuels that are contributing to climate change and other environmental problems. In this vein, renewable energy and energy efficiency are promising pillars of sustainable energy production and consumption, and the recovery of waste heat helps to augment the energy efficiency of a system. Based on the temperature (T) of the heat source, waste heat can be classified into three categories: low temperature (T<100°C), medium temperature (100°C£T<300°C) and high temp-erature (T³300°C). There is scarcity of review work on the integration of waste heat in desalination technologies. In this study, the progress in the utilisation of waste heat to drive thermal desalination processes has been investigated. It is found that 63% of waste heat streams are of low grade, which is still satisfactory for thermal desalination technologies that run on low-temperature heat sources. As of 2018, there was only one known thermal desalination plant driven by waste heat. Lack of data on waste heat, especially in developing countries, has been identified as a major challenge to the advancement of desalination technologies driven by this source of thermal energy. Other constraints are presented and discussed in this paper.
Downloads
References
Abdallah, S and Badran, O.O. 2008. Sun tracking system for productivity enhancement of solar still. Desalination 220 (1-3): 669–676. DOI: https://doi.org/10.1016/j.desal.2007.02.047
Abdallah, S., Badran, O. and Abu-Khader, M.M. 2008. Performance evaluation of a modified design of a single slope solar still. Desalination 219 (1-3): 222-230. DOI: https://doi.org/10.1016/j.desal.2007.05.015
Abdel-Rehim, Z.S and Lasheen, A. 2007. Experimental and theoretical study of a solar desalination system located in Cairo, Egypt. Desalination 217 (1-3): 52-64. DOI: https://doi.org/10.1016/j.desal.2007.01.012
Al-Karaghouli, A. and Kazmerski, L. 2013. Energy consumption and water production cost of conventional and renewable-energy-powered desalination processes. Renewable and Sustainable Energy Reviews 24: 343-356. DOI: https://doi.org/10.1016/j.rser.2012.12.064
Alsaman, A.S., Askalany, A.A., Harby, K. and Ahmed, M.S. 2016. A state of the art of hybrid adsorption desalination – cooling systems. Renewable and Sustainable Energy Reviews 58: 692-703. DOI: https://doi.org/10.1016/j.rser.2015.12.266
Ammar, Y., Joyce, S., Norman, R., Wang, Y. and Roskilly, A.P. 2012. Low grade thermal energy sources and uses from the process industry in the UK. Applied Energy 89 (1): 3-20. DOI: https://doi.org/10.1016/j.apenergy.2011.06.003
Ammar, Y., Li, H., Walsh, C., Thornley, P., Sharifi, V. and Roskilly, A.P. 2013. Reprint of ‘Desalination using low grade heat in the process industry: Challenges and perspectives’. Applied Thermal Engineering 53 (2): 234-245. DOI: https://doi.org/10.1016/j.applthermaleng.2012.11.010
Appadurai, M. and Velmurugan, V. 2015. Performance analysis of fin type solar still integrated with fin type mini solar pond. Sustainable Energy Technologies and Assessments 9: 30-36. DOI: https://doi.org/10.1016/j.seta.2014.11.001
Arunkumar, T., Jayaprakash, R., Perumal, K. and Kumar, S. 2010. Desalination Process of single slope solar still coupled with crescent absorber. Journal of Environmental Research and Development 5 (1): 23-33.
ASHRAE [American Society of Heating, Refrigerating and Air-Conditioning Engineers]. 2001. Fundamentals handbook. Atlanta: American Society of Heating, Refrigerating and Air-Conditioning Engineers.
Badran, A.A., A1-Hallaq, A.A., Salman, I.A.E. and Odat, M.Z. 2005. A solar still augmented with a flat-plate collector. Desalination 172 (3): 227–234. DOI: https://doi.org/10.1016/j.desal.2004.06.203
Bandi, C.S., Uppaluri, R. and Kumar, A. 2016. Global optimization of MSF seawater desalination processes. Desalination 394: 30-43. DOI: https://doi.org/10.1016/j.desal.2016.04.012
Bourouni, K., Chaibi, M.T. and Tadrist, L. 2001. Water desalination by humidification and dehumidification of air: state of the art. Desalination 137 (1-3): 167-176. DOI: https://doi.org/10.1016/S0011-9164(01)00215-6
Breschi, D. 1999. Seawater distillation from low-temperature streams: a case history. Desalination 122 (2-3): 247-254. DOI: https://doi.org/10.1016/S0011-9164(99)00045-4
Brueckner, S., Miró, L., Cabeza, L.F., Pehnt, M. and Laevemann, E. 2014. Methods to estimate the industrial waste heat potential of regions – A categorization and literature review. Renewable and Sustainable Energy Reviews 38: 164-171. DOI: https://doi.org/10.1016/j.rser.2014.04.078
Bundschuh, J., Ghaffour, N., Mahmoudi, H., Goosen, M., Mushtaq, S. and Hoinkis, J. 2015. Low-cost low-enthalpy geothermal heat for freshwater production: Innovative applications using thermal desalination processes. Renewable and Sustainable Energy Reviews 43: 196-206. DOI: https://doi.org/10.1016/j.rser.2014.10.102
Cendoya, M.G., Toccaceli, G.M. and Battaiotto, P.E. 2014. Wind generation applied to water desalination and H2 production in remote areas with weak networks. International Journal of Hydrogen Energy 39 (16): 8827-8832. DOI: https://doi.org/10.1016/j.ijhydene.2013.12.026
Chaichan, M.T. and Kazem, H.A. 2015. Water solar distiller productivity enhancement using concentrating solar water heater and phase change material (PCM). Case Studies in Thermal Engineering 5: 151-159. DOI: https://doi.org/10.1016/j.csite.2015.03.009
Charcosset, C. 2009. A review of membrane processes and renewable energies for desalination. Desalination 245 (1-3): 214-231. DOI: https://doi.org/10.1016/j.desal.2008.06.020
Chunhua, Q., Hongqing, Lv., Houjun, F., Qingchun, Lv. and Yulei, X. 2017. Performance and economic analysis of the distilled seawater desalination process using low-temperature waste hot water. Applied Thermal Engineering 122: 712-722. DOI: https://doi.org/10.1016/j.applthermaleng.2017.05.064
Dehmas, D.A., Kherba, N., Hacene, F.B., Merzouk, N.K., Merzouk, M., Mahmoudi, H. and Goosen, M.F.A. 2011. On the use of wind energy to power reverse osmosis desalination plant: A case study from Ténès (Algeria). Renewable and Sustainable Energy Reviews 15 (2): 956-963. DOI: https://doi.org/10.1016/j.rser.2010.11.004
American Water Works Association. 2011. Desalination of seawater – Manual of water supply practices M61.
Dwivedi, V.K. and Tiwari, G.N. 2010. Experimental validation of thermal model of a double slope active solar still under natural circulation mode. Desalination 250 (1): 49-55. DOI: https://doi.org/10.1016/j.desal.2009.06.060
Elango, C., Gunasekaran, N. and Sampathkumar, K. 2015. Thermal models of solar still – A comprehensive review. Renewable and Sustainable Energy Reviews 47: 856-911. DOI: https://doi.org/10.1016/j.rser.2015.03.054
Elminshawy, N.A.S., Siddiqui, F.R. and Sultan, G.I. 2015. Development of a desalination system driven by solar energy and low grade waste heat. Energy Conversion and Management 103: 28-35. DOI: https://doi.org/10.1016/j.enconman.2015.06.035
Eltawil, M.A., Zhengming, Z. and Yuan, L. 2009. A review of renewable energy technologies integrated with desalination systems. Renewable and Sustainable Energy Reviews 13 (9): 2245-2262. DOI: https://doi.org/10.1016/j.rser.2009.06.011
Forman, C., Muritala, I.K., Pardemann, R. and Meyer, B. 2016. Estimating the global waste heat potential. Renewable and Sustainable Energy Reviews 57: 1568-1579. DOI: https://doi.org/10.1016/j.rser.2015.12.192
Forstmeier, M., Mannerheim, F., D'Amato, F., Shah, M., Liu, Y., Baldea, M. and Stella, A. 2007. Feasibility study on wind-powered desalination. Desalination 203 (1-3): 463-470. DOI: https://doi.org/10.1016/j.desal.2006.05.009
García-Rodríguez, L. 2002. Seawater desalination driven by renewable energies: a review. Desalination 143 (2): 103-113. DOI: https://doi.org/10.1016/S0011-9164(02)00232-1
Ghaffour, N., Bundschuh, J., Mahmoudi, H. and Goosen, M.F.A. 2015. Renewable energy-driven desalination technologies: A comprehensive review on challenges and potential applications of integrated systems. Desalination 356: 94-114. DOI: https://doi.org/10.1016/j.desal.2014.10.024
Gude, V.G. 2016. Desalination and sustainability – An appraisal and current perspective. Water Research 89: 87-106. DOI: https://doi.org/10.1016/j.watres.2015.11.012
Gude, V.G., Nirmalakhandan, N. and Deng, S. 2010. Renewable and sustainable approaches for desalination. Renewable and Sustainable Energy Reviews 14 (9): 2641–2654. DOI: https://doi.org/10.1016/j.rser.2010.06.008
Gude, V.G., Nirmalakhandan, N., Deng, S. and Maganti, A. 2012. Feasibility study of a new two-stage low temperature desalination process. Energy Conversion and Management 56: 192-198. DOI: https://doi.org/10.1016/j.enconman.2011.11.026
Hamed, O.A., Zamamiri, A.M., Aly, S. and Lior, N. 1996. Thermal performance and exergy analysis of a thermal vapour compression desalination system. Energy Conversion and Management 37: 379-387. DOI: https://doi.org/10.1016/0196-8904(95)00194-8
He, W.F., Han, D., Huang, L., Zhang, Y.K. and Wu, Y.K. 2017. Energy and cost analysis of a humidification dehumidification desalination system driven by low grade waste heat. Energy Procedia 142: 2354-2360. DOI: https://doi.org/10.1016/j.egypro.2017.12.166
He, W.F., Xu, L.N., Han, D. and Gao, L. 2016. Performance analysis of an air-heated humidification–dehumidification desalination plant powered by low grade waste heat. Energy Conversion and Management 118: 12-20. DOI: https://doi.org/10.1016/j.enconman.2016.03.073
IPCC [Intergovernmental Panel on Climate Change]. 2012. Renewable energy sources and climate change mitigation: Special report of the Intergovernmental Panel on Climate Change.
IRENA [International Renewable Energy Agency]. 2012. Water desalination using renewable energy. Available: https://www.irena.org/DocumentDownloads/Publications/IRENA-ETSAP%20Tech%20Brief%20I12%20Water-Desalination.pdf.
Kaushal, A. and Varun. 2010. Solar stills: A review. Renewable and Sustainable Energy Reviews 14: 446-453. DOI: https://doi.org/10.1016/j.rser.2009.05.011
Kavvadias, K.C. and Khamis, I. 2014. Sensitivity analysis and probabilistic assessment of seawater desalination costs fuelled by nuclear and fossil fuel. Energy Policy 74: S24–S30. DOI: https://doi.org/10.1016/j.enpol.2014.01.033
Khalifa, A.J.N. and Ibrahim, H.A. 2010. Effect of inclination of the external reflector of simple solar still in winter: An experimental investigation for different cover angles. Desalination 264 (1-2): 129-133. DOI: https://doi.org/10.1016/j.desal.2010.07.016
Khalilzadeh, S. and Nezhad, A.H. 2018. Utilization of waste heat of a high-capacity wind turbine in multi effect distillation desalination: Energy, exergy and thermoeconomic analysis. Desalination 439: 119-137. DOI: https://doi.org/10.1016/j.desal.2018.04.010
Kiranoudis, C.T., Voros, N.G. and Maroulis, Z.B. 1997. Wind energy exploitation for reverse osmosis desalination plants. Desalination 109 (2): 195-209. DOI: https://doi.org/10.1016/S0011-9164(97)00065-9
Koklas, P.A. and Papathanassiou, S.A. 2006. Component sizing for an autonomous wind-driven desalination plant. Renewable Energy 31: 2122-2139. DOI: https://doi.org/10.1016/j.renene.2005.09.027
Kumar, P.V, Kaviti, A.K., Prakash O. and Reddy, K.S. 2012. Optimisation of design and operating parameters on the year round performance of a multi-stage evacuated solar desalination system using transient mathematical analysis. International Journal of Energy and Environment 3 (3): 409-434.
Kumar, P.V., Kumar, A., Prakash, O. and Kaviti, A.K. 2015. Solar stills system design: A review. Renewable and Sustainable Energy Reviews 51: 153-181. DOI: https://doi.org/10.1016/j.rser.2015.04.103
Kumar, R.S., Mani, A. and Kumaraswamy, S. 2005. Analysis of a jet-pump-assisted vacuum desalination system using power plant waste heat. Desalination 179 (1-3): 345-354. DOI: https://doi.org/10.1016/j.desal.2004.11.081
Li, C., Goswami, Y. and Stefanakos, E. 2013. Solar assisted sea water desalination: A review. Renewable and Sustainable Energy Reviews 19: 136-163. DOI: https://doi.org/10.1016/j.rser.2012.04.059
Liu, C.C.K., Jae-Woo, P., Migita, R. and Gang, Q. 2002. Experiments of a prototype wind-driven reverse osmosis desalination system with feedback control. Desalination 150 (3): 277-287. DOI: https://doi.org/10.1016/S0011-9164(02)00984-0
Loutatidou, S. and Arafat, H.A. 2015. Techno-economic analysis of MED and RO desalination powered by low-enthalpy geothermal energy. Desalination 365: 277-292. DOI: https://doi.org/10.1016/j.desal.2015.03.010
Lu, H., Price, L. and Zhang, Q. 2016. Capturing the invisible resource: Analysis of waste heat potential in Chinese industry. Applied Energy 161: 497-511. DOI: https://doi.org/10.1016/j.apenergy.2015.10.060
Maheswari, K.S., Murugavel, K.K. and Esakkimuthu, G. 2015. Thermal desalination using diesel engine exhaust waste heat – An experimental analysis. Desalination 358: 94-100. DOI: https://doi.org/10.1016/j.desal.2014.12.023
Mahmoudi, H., Spahis, N., Goosen, M.F., Ghaffour, N., Drouiche, N. and Ouagued, A. 2010. Application of geothermal energy for heating and fresh water production in a brackish water greenhouse desalination unit: A case study from Algeria. Renewable and Sustainable Energy Reviews 14 (1): 512-517. DOI: https://doi.org/10.1016/j.rser.2009.07.038
Manenti, F., Masi, M., Santucci, G., and Manenti, G. 2013. Parametric simulation and economic assessment of a heat integrated geothermal desalination plant. Desalination 317: 193-205. DOI: https://doi.org/10.1016/j.desal.2013.02.027
Matrawy, K.K., Alosaimy, A.S. and Mahrous, A.F. 2015. Modeling and experimental study of a corrugated wick type solar still: Comparative study with a simple basin type. Energy Conversion and Management 105: 1261–1268. DOI: https://doi.org/10.1016/j.enconman.2015.09.006
Miranda, M.S. and Infield, D. 2003. A wind-powered seawater reverse-osmosis system without batteries. Desalination 153 (1-3): 9-16. DOI: https://doi.org/10.1016/S0011-9164(02)01088-3
Miró, L., Brückner, S. and Cabeza, L.F. 2015. Mapping and discussing industrial waste heat (IWH) potentials for different countries. Renewable and Sustainable Energy Reviews 51: 847-855. DOI: https://doi.org/10.1016/j.rser.2015.06.035
Mohamed, A.M.I. and El-Minshawy, N.A.S. 2009. Humidification–dehumidification desalination system driven by geothermal energy. Desalination 249 (2): 602-608. DOI: https://doi.org/10.1016/j.desal.2008.12.053
Morad, M.M., El-Maghawry, H.A.M. and Wasfy, K.I. 2015. Improving the double slope solar still performance by using flat-plate solar collector and cooling glass cover. Desalination 373: 1-9. DOI: https://doi.org/10.1016/j.desal.2015.06.017
Okoroigwe, E. and Madhlopa, A. 2016. An integrated combined cycle system driven by a solar tower: A review. Renewable and Sustainable Energy Reviews 57: 337-350. DOI: https://doi.org/10.1016/j.rser.2015.12.092
Omara, Z.M. and Eltawil, M.A. 2013. Hybrid of solar dish concentrator, new boiler and simple solar collector for brackish water desalination. Desalination 326: 62-68. DOI: https://doi.org/10.1016/j.desal.2013.07.019
Omara, Z.M., Kabeel, A.E. and Younes, M.M. 2013. Enhancing the stepped solar still performance using internal reflectors. Desalination 314: 67-72. DOI: https://doi.org/10.1016/j.desal.2013.01.007
Palenzuela, P., Hassan, A.S., Zaragoza, G. & Alarcón-Padilla, D.C. 2014. Steady state model for multi-effect distillation case study: Plataforma Solar de Almería MED pilot plant. Desalination 337: 31-42. DOI: https://doi.org/10.1016/j.desal.2013.12.029
Park, C.D., Lim, B.J., Chung, K.Y., Lee, S.S. and Kim, Y.M. 2016. Experimental evaluation of hybrid solar still using waste heat. Desalination 379: 1-9. DOI: https://doi.org/10.1016/j.desal.2015.10.004
Park, C.D., Lim, B.J., Noh, Y.D., Lee, S.S. and Chung, K.Y. 2015. Parametric performance test of distiller utilizing solar and waste heat. Desalination and Water Treatment 55 (12): 3303-3309. DOI: https://doi.org/10.1080/19443994.2014.946712
Pehnt, M., Bödeker, J., Arens, M., Jochem, E. and Idrissova, F. Industrial waste heat – tapping into a neglected efficiency potential. In: Proceedings of the ECEEE 2011 Summer Study – Energy efficiency first: The foundation of a low-carbon society; 2011. p. 691-700.
Pugsley, A., Zacharopoulos, A., Mondol, J.D. and Smyth, M. 2016. Global applicability of solar desalination. Renewable Energy 88: 200-219. DOI: https://doi.org/10.1016/j.renene.2015.11.017
Rajaseenivasan, T., Raja, P.N. and Srithar, K. 2014. An experimental investigation on a solar still with an integrated flat plate collector. Desalination 347: 131-137. DOI: https://doi.org/10.1016/j.desal.2014.05.029
Ranjan, K.R. and Kaushik, S.C. 2013. Energy, exergy and thermo-economic analysis of solar distillation systems: A review. Renewable and Sustainable Energy Reviews 27: 709-723. DOI: https://doi.org/10.1016/j.rser.2013.07.025
Sada, G.K. and Jassim, L.I. 2009. Utilization of exhaust waste heat from power plants for sea water desalination. Journal of Engineering and Development 13 (4): 58-68.
Sampathkumar, K., Arjunan, T.V., Pitchandi, P. and Senthilkumar, P. 2010. Active solar distillation – A detailed review. Renewable and Sustainable Energy Reviews 14: 1503-1526. DOI: https://doi.org/10.1016/j.rser.2010.01.023
Sarbatly, R. and Chiam, C.K. 2013. Evaluation of geothermal energy in desalination by vacuum membrane distillation. Applied Energy 112: 737-746. DOI: https://doi.org/10.1016/j.apenergy.2012.12.028
Sharon, H. and Reddy, K.S. 2015. A review of solar energy driven desalination technologies. Renewable and Sustainable Energy Reviews 41: 1080–1118. DOI: https://doi.org/10.1016/j.rser.2014.09.002
Shatat, M., Worall, M. and Riffat, S. 2013. Opportunities for solar water desalination worldwide: Review. Sustainable Cities and Society 9: 67-80. DOI: https://doi.org/10.1016/j.scs.2013.03.004
Shih, H and Shih, T. 2007. Utilization of waste heat in the desalination process. Desalination 204 (1-3): 464-470. DOI: https://doi.org/10.1016/j.desal.2006.02.044
Singh, R.V., Kumar, S., Hasan, M.M., Khan, M.E. and Tiwari, G.N. 2013. Performance of a solar still integrated with evacuated tube collector in natural mode. Desalination 318: 25-33. DOI: https://doi.org/10.1016/j.desal.2013.03.012
Sodha, M.S., Kumar, A. and Tiwari, G.N. 1981. Utilisation of waste hot water for distillation. Desalination 37 (3): 325-342. DOI: https://doi.org/10.1016/S0011-9164(00)88656-7
Sommarva, C. 2008. Utilisation of power plant waste heat steams to enhance efficiency in thermal desalination. Desalination 222 (1-3): 592-595. DOI: https://doi.org/10.1016/j.desal.2007.01.122
Sparks, D., Madhlopa, A., Keen, S., Moorlach, M., Dane, A., Krog, P. and Dlamini, T. 2014. Renewable energy choices and their water requirements in South Africa. Journal of Energy in Southern Africa 25 (4): 80-92. DOI: https://doi.org/10.17159/2413-3051/2014/v25i4a2241
Srithar, K., Rajaseenivasan, T., Karthik, N., Periyannan, M. and Gowtham, M. 2016. Stand alone triple basin solar desalination system with cover cooling and parabolic dish concentrator. Renewable Energy 90: 157–165. DOI: https://doi.org/10.1016/j.renene.2015.12.063
Subrami, A. and Jacangelo, J.G. 2015. Emerging desalination technologies for water treatment: A critical review. Water Research 75: 164-187. DOI: https://doi.org/10.1016/j.watres.2015.02.032
Tanaka, H. 2009. Experimental study of a basin type solar still with internal and external reflectors in winter. Desalination 249 (1): 130–134. DOI: https://doi.org/10.1016/j.desal.2009.02.057
Tanaka, H. 2011. A theoretical analysis of basin type solar still with flat plate external bottom reflector. Desalination 279 (1-3): 243-251. DOI: https://doi.org/10.1016/j.desal.2011.06.016
Tanaka, H. and Park, C.D. 2010. Distillation utilizing waste heat from a portable electric generator. Desalination 258 (1-3): 136-142. DOI: https://doi.org/10.1016/j.desal.2010.03.025
Tay, J.H., Low, S.C. and Jeyaseelan, S. 1996. Vacuum desalination for water purification using waste heat. Desalination 106 (1-3): 131-135. DOI: https://doi.org/10.1016/S0011-9164(96)00104-X
Thu, K., Saha, B.B., Chua, K.J. and Ng, K.C. 2016. Performance investigation of a waste heat-driven 3-bed 2-evaporator adsorption cycle for cooling and desalination. International Journal of Heat and Mass Transfer 101: 1111-1122. DOI: https://doi.org/10.1016/j.ijheatmasstransfer.2016.05.127
United States Department of Energy. Waste heat recovery: Technology and opportunities in U.S. industry. 2008. Available: http://www1.eere.energy.gov/manufacturing/intensiveprocesses/pdfs/waste_heat_recovery.pdf.
Williams, P.M., Ahmad, M., Connolly, B.S. and Oatley-Radcliffe, D.L. 2015. Technology for freeze concentration in the desalination industry. Desalination 356: 314-327. DOI: https://doi.org/10.1016/j.desal.2014.10.023
World Health Organisation. 2015. Drinking water. Available: http://www.who.int/mediacentre/factsheets/fs391/en/.
World Resources Institute. 2015. Ranking the world’s most water-stressed countries in 2040. Available: http://www.wri.org/blog/2015/08/ranking-world%E2%80%99s-most-water-stressed-countries-2040.
Xu, Z.Y., Wang, R.Z. and Yang, C. 2019. Perspectives for low-temperature waste heat recovery. Energy. 176: 1037-1043. DOI: https://doi.org/10.1016/j.energy.2019.04.001
Youssef, P.G., Al-Dadah, R.K. and Mahmoud, S.M. 2014. Comparative analysis of desalination technologies. Energy Procedia 61: 2604-2607. DOI: https://doi.org/10.1016/j.egypro.2014.12.258
Zhang, F., Xu, S., Feng, D., Chen, S., Du, R., Su, C. and Shen, B. 2017. A low-temperature multi-effect desalination system powered by the cooling water of a diesel engine. Desalination 404: 112-120. DOI: https://doi.org/10.1016/j.desal.2016.11.006
Downloads
Published
Issue
Section
License
Copyright (c) 2022 Deepti Charitar, Amos Madhlopa
This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.