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Abstract

Solar thermal energy (STE) technology refers to the
conversion of solar energy to readily usable energy
forms. The most important component of a STE
technology is the collectors; these absorb the short-
er wavelength solar energy (400-700nm) and con-
vert it into usable, longer wavelength (about 10
times as long) heat energy. Depending on the qual-
ity (temperature and intensity) of the resulting ther-
mal energy, further conversions to other energy
forms such as electrical power may follow.
Currently some high temperature STE technologies
for electricity production have attained technical
maturity; technologies such as parabolic dish (com-
mercially available), parabolic trough and power
tower are only hindered by unfavourable market
factors including high maintenance and operating
costs. Low temperature STEs have so far been
restricted to water and space heating; however,
owing to their lower running costs and almost main-
tenance free operation, although operating at lower
efficiencies, may hold a key to future wider usage of
solar energy. Low temperature STE conversion
technology typically uses flat plate and low concen-
trating collectors such as parabolic troughs to har-
ness solar energy for conversion to mechanical
andjor electrical energy. These collector systems are
relatively cheaper, simpler in construction and easi-
er to operate due to the absence of complex solar
tracking equipment. Low temperature STEs oper-
ate within temperatures ranges below 3000C. This
research work is geared towards developing feasible
low temperature STE conversion technology for
electrical power generation. Preliminary small-scale
concept plants have been designed at 500Wp and
10KWp. Mathematical models of the plant systems
have been developed and simulated on the EES
(Engineering Equation Solver) platform. Fourteen

candidate working fluids and three cycle configura-
tions have been analysed with the models. The
analyses included a logic model selector through
which an optimal conversion cycle configuration
and working fluid mix was established. This was fol-
lowed by detailed plant component modelling; the
detailed component model for the solar field was
completed and was based on 2-dimensional seg-
mented thermal network, heat transfer and thermo
fluid dynamics analyses. Input data such as solar
insolation, ambient temperature and wind speed
were obtained from the national meteorology data-
bases. Detailed models of the other cycle compo-
nents are to follow in next stage of the research. This
paper presents findings of the system and solar field
component.

Keywords: low temperature solar thermal energy,
mathematical model, EEES computer simulations,
working fluids, cycle configuration, component and
system models

1. Introduction

Most naturally occurring energies such as light ener-
gy from the sun, chemical energy in fossil and bio-
mass fuels, mechanical energy in hydro-streams of
rivers and oceans, in tidal waves, and in wind etc.,
thermal energy in geothermal resources, and
nuclear energy in nuclear fuels are present not in a
readily usable form and sometimes presents a tech-
nical burden if an attempt is made to transport it in
its natural form. Energy conversion systems allow
us to transform the natural energy to conveniently
usable, storable and transportable forms. This
paper looks at the conversion of low temperature
solar thermal energy to electrical energy.
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STE technology refers to the conversion of
shorter wavelength solar energy (400-700nm) to
longer wavelength (about 10 times as long) heat
energy. The most important component of a STE
technology is the collectors which absorb and con-
vert solar energy into electrical power, for example.

Currently some high temperature solar thermal
energy (HTSTE) technologies for electricity produc-
tion have attained technical maturity and are only
hindered by unfavourable market factors including
high maintenance and operating costs. Examples of
HTSTE technologies include parabolic dish, para-
bolic trough, and power tower systems (Groen-
endaal, 2002).

Low temperature solar thermal energy (LTSTE)
technologies have so far been restricted to water
and space heating with little or no emphasis on
power generation. Examples of applications in-
clude:

* Evaporation ponds for extraction of sea water
salt;

* Concentrating brine solutions in leach mining
and removing dissolved solids from waste
streams;

* Domestic and process water heating;

* Preheating of ventilation air; and

* Crop drying as in drying of coffee beans and
marigolds.

However, owing to their lower running costs and al-

most maintenance free operation, LTSTE technolo-

gies, although operating at lower efficiencies, may
hold a key to future wider usage of solar energy.

Current research on LTSTE for power genera-
tion include solar thermal organic Rankine cycle,
solar thermal Kalina cycle, Solar Chimney and
SNAP (Groenendaal, 2002). Figure 1 shows
schematic illustrations of the Solar Chimney, SNAP
Plants, Organic Rankine and Kalina Cycles.

2. Feasibility study for development of low
temperature solar thermal energy

LTSTE conversion technology typically uses flat
plate and low concentrating collectors such as par-

EVAPORATOR

abolic troughs to harness solar energy for conver-
sion to mechanical and/or electrical energy. These
collector systems are relatively cheaper, simpler in
construction and easier to operate due to the
absence of complex solar tracking equipment found
in HTSTE systems. LTSTE operate within tempera-
tures ranges below 300°C.

Figures 2 and 3 show two possible experimental
setups. The general layout consists of the solar col-
lector, heat exchangers, turbine-generator, pumps
and piping. The first concept sketch shows the first
experimental setup whereby the heat transfer fluid
is pumped through the solar collector where it is
heated and is then passed through the evaporator
where heat is transferred to the working fluid. In the
second experimental setup, as shown in the second
concept sketch, the working fluid is directly heated
and evaporated by a solar collector. Whereas the
first setup has the advantage of eliminating one
heat exchanger, the evaporator, and reducing the
required piping, it presents other design challenges;
for instance the solar collector must have the
required corrosion resistance and be able to with-
stand higher pressures associated with the working
fluid.

Preliminary small-scale concept plants have
been designed at 500Wp and 10KWp, where the
smaller model is intended as a laboratory experi-
ment and the larger as a field experiment. The aim
of this laboratory test is to get an insight in the
experimental test setup and results recording and
analyses as well as to implement any needed
improvements. The field experimental setup will
involve the 10kWp Low Temperature Solar Energy
Conversion Model.

Designing the cycle involves optimally sizing its
main components so as to attain the intended out-
put. The main cycle components are the evaporator
and condenser heat exchangers, and the turbine
and pumps work devices, the solar collectors array
and the generator. The other design aspect involves
sizing the duct network so as to minimise both pres-
sure and heat losses and determining the quantities
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chimney
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Solar chimney
(Schlaich, 1995)

SNAP plant

Organic Rankine Cycle
(montaraventures.com)

Kalina Cycle
(www.eng.usf.edu)

Figure 1: Examples of low temperature solar thermal energy technologies
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Figure 2: Experimental setup concept 1
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Figure 3: Experimental setup concept 2

of both the working and heat transfer fluids as well
as specifying the type of insulation.

The solar field is an important aspect of this
design as it involves not only determining the size of
the field but also the layout of the solar collectors
array.

The preliminary array design is based on the
Solardome SA Solar Collector size 1840 x 1650
mm, giving area of 3.04 m? (www.solardome.
co.za). The efficiencies of flat plate collector from
Thermomax Industries (www.thermotechs.com)

range from 35 to 50 % for domestic hot water with
mean temperature T, = 55°C. Where T, is the
average temperature of fluid in the collector and is
given by:

T = Tt Tou "

where T;, and T, are respectively the solar collec-
tor inlet and outlet temperatures. The range of effi-
ciencies for Rankine cycle operating at low to medi-
um temperatures ranges from 9.9 to 14.1%
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(Nishith, 2009). Taking averages the overall system
efficiency could be taken as 5.1%. Thus the solar
thermal energy available should be about 9.8kWry,
for the laboratory model and 196kWry, for the field
model. Durban Insolation data averages 4.328
kWh/m?/day (www.gaisma.com). First approxima-
tions of the corresponding solar fields are shown in
Table 1 and preliminary solar array layouts are
shown in Figures 4 .

Table 1: First pass size estimates of the
solar arrays

Parameter Lab. model Field model Units

(solar (solar

collector) collector)

Output power 0.5 10 kW
ORC mean efficiency 12 12 %
Solar mean efficiency  42.5 42.5 %
Input power 9.80 196.08 kW
Durban insolation 4.328 4.328
kWh/m?2/day
Incident area 27 545 m?
Solar collector area 3.04 3.04 m?
No. of solar collectors 9 179

3. Mathematical modelling

Mathematical models of the plant systems have
been developed and simulated on the EES
(Engineering Equation Solver) platform. Fourteen
candidate working fluids and three cycle configura-
tions have been analysed with the models. The
analyses include a logic model selector through
which an optimal conversion cycle configuration
and working fluid mix is established.

3.1 First pass mathematical modelling
(Situmbeko, 2011)

The first pass model gives an initial insight into the
performance of the proposed energy conversion
system design. This first pass model output togeth-
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Figure 4: Two layouts options for 500 Wp solar field
(requires 9 solar collectors with two layout options)

er with the more detailed specifications of compo-
nents for the proposed system design will yield a
more detailed model with more realistic perform-
ance parameters that can now be incorporated in
the design, development and validation of the
physical model. In this work a more generalized
model is first proposed as in Figure 6. This is then
further customized to the thermo-physical proper-
ties of the different proposed working fluids. In par-
ticular a mathematical logic model is incorporated
to assign an appropriate cycle configuration to each
proposed working fluid.

The first pass model makes a number of
assumptions such as:

* pumping and expansion efficiencies are

assumed as hpump = 0.65, hturbine = 0.85
* modelling of heat exchangers at this stage is only

performed as a thermal process to determine

required input thermal energy and required
exhaust thermal energy (detailed heat exchang-
er modelling will be done at a later stage)

e thermal losses in the cycle components and
ducting are negligible;

* pressure head losses in the heat exchangers are
negligible; and

* no work and no heat transfer occur in the
valves, etc.

Three types of models can be identified with low
temperature thermal cycles depending on the
nature of the working fluid. Based on the fluids’ T-s
(temperature versus entropy) saturation curves
these three types of energy conversion systems are:
the conventional Rankine cycle, Rankine cycle with
a recuperator and Rankine cycle with a superheater
as shown in Figure 7. A summary of results of com-
puter simulations of the first pass model is shown in
Table 2.

3.2 Detailed component models: Solar field
collector modelling

Detail modelling of a solar collector requires knowl-
edge of the geometrical measurements and thermal
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Figure 5: Possible layout for 10kWp solar field
(requires 180 solar collectors)
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Figure 7: Three configuration options

properties of materials used in the construction. The
process is based on carrying out an energy balance
which can be either steady state or transient. A tran-
sient model is more useful when the solar data can
be measured and fed synchronously to the simula-
tion model.

Figure 8 shows the cross-section of a One-Riser-
Pipe Solar Thermal Collector that was used to
develop the energy balance represented in equa-
tions 2 to 6 below.

For the glass cover:

Qstore,C = Qin,C — Qconu,C% - Qrad,C% +
Qcanv,A% + Qrad,AaC (2)

For the absorber plate:

Qstore,A = QinA — Qconv,AaC - Qrad,AaC -
Qcond,AaF - Qcond,Aw

For the heat transfer fluid:

Qcond,AaF = Qcond,Faa + cth

For the storage tank:

Qstore,T = Qth - Qcond,T—)a

Thermal efficiency:

Nth

— J Qenadt
Ac [ Gat
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Table 2. Thermal efficiencies of different Organic Rankine Cycle configurations and different
working fluids

Model type Working fluid Q dot_r Q _dot_ Q dot_ Power eta_ therm

evaporato recuperator superheater

(kW) (kW) (kW) (kW) (%)

Rankine with recuperator n-pentane 4.07 0.40 0 0.50 12.04
no superheater
Conventional Rankine no Benzene 4.68 0 0 0.53 11.11
recuperator no superheater
Conventional rankine no n-butane 4.56 0 0 0.54 11.60
recuperator no superheater
Rankine with recuperator n-hexane 3.75 0.61 0 0.46 12.10
no superheater
Conventional Rankine no [sobutene 4.31 0 0 0.52 11.72
recuperator no superheater
Conventional Rankine no R141b 2.60 0 0 0.30 11.30
recuperator no superheater
Rankine with recuperator [s pentane 3.90 0.38 0 0.49 12.20
no superheater
Conventional Rankine R245fa 2.30 0 0 0.24 10.38
no recuperator no superheater
Rankine with recuperator R113 1.64 0.16 0 0.20 11.89
no superheater
Conventional Rankine no R123 2.02 0 0 0.23 11.02
recuperator no superheater
Rankine with superheater R22 2.50 0 0.21 0.33 12.01
no recuperator
Rankine with recuperator Toluene 4.09 0.45 0 0.49 11.75
no superheater
Rankine with superheater R134a 241 0 0.08 0.28 10.99
no recuperator
Rankine with superheater Water 23.29 0 2.57 2.80 10.81

no recuperator

For the air gap the correlation used to determine

N the convective heat transfer coefficient is that given
». G G G . by Hollands et al (Duffie, 1991); for inclined
| &% ™ \ [ parallel plates with a tilt angle of 0-75° which is
H &
given as:

Cover — ol 1
i 1708(sin 1.88)16 1708 1t
_ Nu =1+ 1441 - T80 ][ 270 ]
AN GOAR o o \q-n,.h r Qeome.A-C Quad A-C Racosf Racosf8
+
Racosf8 1/3
) T ] 1 [ —1 (7)
Sbsorber | Qeond A-F, aaraik ( 5830 )
Insulator l t where the meaning of the + exponent is that only
Qeond.A-a Qth positive values of the terms in the square brackets
are to be used (i.e., use zero if the term is
Qrond f-a negative); and the Nusselt number Nu and the
Rayleigh number Ra are given by:
Figure 8: One pipe solar collector model e T L i (8)
k va
where:
h = heat transfer coefficient,
L = plate spacing
k = thermal conductivity
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g = gravitational constant

B = volumetric coefficient of expansion (for an
ideal gas, f=1/T)

AT = temperature difference between plates

kinematic viscosity

thermal diffusivity

QR <
[l

For laminar flow in circular pipes the correlation
used is that given by Incropera (2007):

hD _
- =436 9)

for uniform surface heat flux

Nup =

Nup = "TD = 3.66 (10)

forconstant surface temperature
For this case the transfer to the heat transfer fluid

lies in between the two conditions and therefore
the Nusselt number used is the average of the two.

For the Wind Convection Coefficients, Duffie
(1991) recommend using:

8,6‘/0'6
104

hy = max[5, ] (11)

where V (m/s) is wind speed and L (m) is the cube
root of the house volume.

The average hourly radiation can be estimated
from the total daily radiation by using the foll-
owing equation (Silva, 2011):

I =Hr, (12)

The coefficient to convert total daily radiation, H
(Wh/m?-day) to average hourly radiation I (W/m?)
is given by:

= %(a + bcosw) % (13)

S 180 s

where w is the hour angle and W, is the sunset
hour angle in degrees. The coefficients a and b are
given by:

a = 0.409 + 0.5016sin(w, — 60)
(14)
b = 0.6609 — 0.4767sin(w, — 60)

The model also requires inputs of ambient tem-
peratures; these are included in Table 3.

Transient conditions

Considering the steady-state model above, corre-
sponding transient models can be developed. These
are however not used in the current model as the
transiency is modelled into the time step segmented
model.

Table 3: Hourly ambient temperatures for the
modelled day (www.weather.com)

Time  Temp. Time  Temp. Time Temp.
(°C) (°C) (°C)
Sam 20 1pm 26 9pm 23
6am 20 2pm 27 10pm 22
7am 20 3pm 26 11pm 21
8am 20 4pm 26 12am 21
9am 22 5pm 26 lam 21
10am 23 6pm 24 2am 20
1llam 25 7pm 24 3am 20
12pm 25 8pm 23 4am 20

Storage model

The thermal storage model consists of an energy
balance consisting of charging, discharging and
thermal losses. In this model, however, only charg-
ing has been considered. The discharging and ther-
mal losses will be considered at the time of coupling
the solar cycle sub-model to the thermal conversion
cycle sub-model. The charging model is given by
the equations:

Qtank = mwg * prg ¥ (ng,out,SO - Ttank)

\ _ Ttank_ng,in,l
Qtank - mwg,tank * prg * [ t (15)
cycle

where:

Qrank (J/s) is the heat transfer rate to the thermal
storage;

My, (kg/s) is the mass flow rate of the water
ethylene glycol working fluid;

Mygrank (KG) is the mass of the water ethylene
glycol in the storage tank;

Cpwg (I/kg-K) is the specific heat capacity of the
water ethylene glycol;

teycte (8) is the cycle time for the current cycle;
Twgoutzo (°C) is the temperature of the working
fluid exiting the collector model and entering the
storage tank for the current cycle;

Twg,in1 (°C) is the temperature of the working fluid
entering the collector model at the previous cycle (
it is also the temperature of the storage tank at
previous cycle); and

Tiank (°C) is the new storage tank temperature for
the current cycle.

4 Computer simulations

4.1 Description of the computer model

The model consists of a code written in EES. EES
has the advantage that apart from its flexible solver
capabilities it also already contains thermodynamic
properties of most working fluids and materials
including the ethylene glycol water mixture used in
this model and the air contained in the air gap. The
thermodynamic properties include density, specific
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heat, thermal conductivity, viscosity, etc.

The code is arranged in the following format:

* Main Program: Calls the two procedures Nus-
seltNumber and HourCycle; and outputs ther-
mal storage data.

* SubProgram SegmentedModel: calculates the
energy balance for each cycle; calls the I_sol

* Function [ sol: calculates the hour solar radia-
tion

* Procedure NusseltNumber: calculates the
Nusselt number for each segment of the air gap.

* Procedure HourCycle: compiles energy data for
all cycles in each hour

4.2 Model validation

The model was run for the selected hourly ambient
temperatures of the typical March-April day as in
Table 3. The model calculated the hourly total radi-
ation as in equations 12 to 14. Two tests were done
for the 9-solar-collectors field and the 180-solar-col-
lectors field. The model used was a one pipe model;
thus it was assumed for the 9 solar collectors that
three one-pipe solar collectors were connected in
series and for the 180 solar collectors that eighteen
one-pipe solar collectors were connected in series.
The geometrical sizes and thermal properties of the
single riser pipe solar collectors model are given in
Table 4.

5. Results of computer models and
simulations

The results of the solar model computer simulations
are presented in the following charts:

5.1 Computer solar radiation model

Figure 9 shows the computed hour radiation values.
The computed solar radiation is highest at noon
and is almost symmetrically reducing to zero on

sides, the forenoon and the afternoon. The peak at
noon is 613.2 W/m2. The simplified model seems
adequate for design purposes. In actual situations
the model would have to take into account other
weather parameters such as cloud cover, wind and
precipitation. The solar radiation curve closely fol-
lows the fourth order polynomial:

y = 0.296x* — 8.306x3 + 59.70x% — 21.82x
-27.03

5.2 Temperature modelling results

Figure 10 shows the temperature profiles along the
segments of the collectors. T p is the temperature
profile for the absorber plate and T _wg is the tem-
perature profile for the water ethylene glycol work-
ing fluid. The numbers enclosed in the parentheses
represent the number of the one-pipe-model collec-
tors as they are connected in series. These results
are for a one cycle pass with no storage model con-
nected.

Figure 11 shows the energy profiles along the
segments of the collectors. Q_dot wg is the heat
transfer profile to the working fluid and Q_dot_loss
represents the thermal losses from the collector at
each segment. Similarly these results are for a one
cycle pass with no storage model connected.

The rate of heat gain by the working fluid
decreases along linear segments of the collector
whilst the rate of heat losses from the collector
increases along the linear segments of the collector.

Figure 12 shows results for the 180-solar collec-
tor single pipe field model. The computer model
consists of 18 one-pipe models connected in series
to represent the 180-solar collector field.

There is a steady build-up of temperature for all
components along the model segments and banks.

Table 4: Description of the simulated model

Length of absorber plate

2.0 m for entire collector; 200mm for each segment model

Width of absorber plate

1.0m for entire collector; 125mm for the one-pipe model

Diameter of riser pipe 6mm internal diameter

Material of absorber plate 1mm Aluminium plate

Material of riser pipe [.D 6mmX1mm Copper Pipe

Material of insulation 40mm Polyurethane Form

Material of transparent cover 4mm Solar Grade Glass

Transmissivity of cover 09
Absorptance of absorber 09
Emissivity of absorber 0.1

0.85

Ethylene glycol water; 50% concentration

Emissivity of glass

Heat transfer fluid

10 for each collector; the model collector consists of a one-pipe absorber plate
2.0m length X 125mm width

300 litres for the 9 solar collectors (i.e. for the entire solar field); or 12.5 litres
for one-pipe model

Number of thermal model segments

Size of storage tank
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Figure 9: Simulated hourly solar radiation values
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The temperature is highest in the absorber plate
and lowest in the transparent cover; also the rate of
temperature increase is lowest in the transparent
cover. The rate of temperature increase closely fol-
lows the same profile in both the absorber and in
the working fluid.

Curve fit results yielded the following second

70 T
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- 10
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solar banks Mo.

Figure 12: Temperature profile along solar banks; 180-
collector model
order polynomials:
T p:y = -0.320x% + 8.483x + 17.93
T wa:y = -0.334x% + 9.080x + 11.32

T ¢y = -0.087x% + 2.367x + 13.87
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Figure 13: Hourly temperature profiles

Figure 13 shows the hourly temperature profiles.
These simulations consists of several cycles (114
cycles calculated) to make an hour. The tempera-
ture measurement is taken at the end of the hour.
These simulations include a thermal storage repre-
sented by the tank temperature T_tank.

The absorber plate attains the highest tempera-
ture followed by the working fluid (water ethylene
glycol) at the exit of the solar field and in the tank
storage. The three temperature profiles follow each
other closely and build-up slowly from morning to a
high about noon. The absorber increases tempera-
ture from ambient temperature of 20°C to slightly
over 100°C about noon; the water ethylene glycol
attains a maximum of slightly below 100°C and
about 90°C at the exit of the solar collector and in
the storage tank respectively. This is desirable for
heat transfer to continue flowing from the absorber
to the working fluid.

The transparent cover has a much lower tem-
perature ranging from ambient temperature to
about 40°C. This ensures lower thermal losses.

Curve fitting gave the following results:

T p:y = -0.460x3 + 6.007x2 - 8.466x + 23.20

T wa: y = -0.439x3 + 5.955x2 - 10.06x + 24.93
T tank:y = -0.403x3 + 5.831x% - 12.62x + 27.75
T ¢y =-0.258x3 + 3.694x? - 11.48x + 27.65

T ambient: y = 0.988x + 18.17

5.3 Energy modelling results
Figures 14 and 15 show useful heat gains and ther-
mal losses.

The levels of heat transfer to the working fluid in
the storage tank increases with time from the lowest
values in the morning (7am) to the highest values in
mid-morning (11am) and then decreases with time
attaining lower values at noon and 1pm respective-

ly.

The levels of heat transfer also decrease within
each hour, being higher at the beginning of the
hour than at the end; this, however, could be due to
the hourly radiation level being assumed constant.

The level of thermal losses increases with time
from the lowest at the start of the modelling time
(7am) to the highest and the end of the modelling
time (1pm). Sky losses are the highest ranging from
about 50% to 100%.

Figure 16 shows average hourly thermal effi-
ciency. The thermal efficiencies are highest near the
commencement of the modelling period (7am, 8am
and 9am are highest; the lowest efficiencies are at
1pm followed by 12pm).

The average efficiency has a high of 56% at
8pm and a low of 35% at 1pm; the regression
analysis yielded the following curve fit:

y = 0.055x3 - 1.321x% + 4.265x + 51.42.

6. Discussions and conclusions

Preliminary small-scale concept plants, 500Wp and
10kWp, have been presented, modelled and com-
puter-simulated. The first pass modelling used 14
candidate organic fluids and three optional plant
configurations which gave thermal efficiencies rang-
ing from 10.38% to 12.20%; the highest being
[sopentane and organic Rankine with recuperator
and the lowest being R245fa with conventional
organic Rankine cycle.

The solar field modelling has been done with
Ethylene Glycol Water (50% concentration) as the
heat transfer fluid. The model included simulations
of hourly solar insolation values, and solar collector
and storage tank energy balances.

The general trend exhibited by the temperature
profiles for the absorber, ethylene glycol water and
transparent cover along the flow direction of the
heat transfer fluid is that of a second order polyno-
mial continuously increasing but with a diminishing
gradient.

The hourly temperature profiles for the
absorber, transparent cover, heat transfer fluid at
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Figure 16: Average hourly thermal efficiency

collector exit, and heat transfer fluid in the storage
tank, on the other hand exhibited a third order
polynomial character starting with a lower gradient,
developing into a steep gradient and then slowing
down to a lower gradient.

The hourly efficiency curve also exhibited a
third order polynomial profile starting with higher
values and tailing down to lower values.

By regression one is able to mathematically
determine the totals and averages for futures analy-
ses.

A simple analysis of the 9-collector model shows
the thermal energy output being less than the
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approximated requirements. These will be adjusted
in the full simulations once the models of the other
components have been finalised.

The main limitation in the simulations was the
lower number of permissible variables of the aca-
demic commercial version of the software and the
low computing speed to the extent that some simu-
lation cycles had to be broken down to allow for
manual entering of data midway through the simu-
lations.

The valuable insights gained from these simula-
tions will provide a solid basis for the final concepts
designs and physical validations.
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