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Abstract 
Being dependent on weather, photovoltaic and wind 
system energy contributions fluctuate and are not 
continuously available, and sometimes not in the de-
sired quantity. To avoid load shedding or blackout 
in this situation, the estimation-control of energy can 
be useful to ensure continuity of supply and assist 
the planning operation of the power system. This 
study proposes the estimation-control of the flow of 
energy between two microgrids interconnected via 
two alternating current tie-lines. Two sources of 
power generation depending on weather behaviours 
have been considered. The effectiveness of the pro-
posed estimation-control model was shown using 
the Extended Kalman filter combined with the fmin-
con algorithm.  
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1. Introduction 
To ensure the balance of an interconnected system, 
it is first necessary that each area must be able to 
supply its own load without depending on the other 
networks. It can happen that, due to variations in the 
power system operation, one or more areas have 
deficit in electricity, at which moment electrical 
power can be transferred between the areas because 
the load change occurs continuously and randomly. 
As a result, the deviations of load frequency and the 
tie-line power flow from scheduled generation limits. 
Regulating the frequency to its nominal value and 
maintaining the flow of energy in the tie-lines be-
tween areas are the strategies adopted for daily 
management of the power system. The integration 
of the renewable energy sources into the power net-
work makes the network complex, requiring ad-
vance control methods so that the system can be run 
safely and controlled effectively [1-3]. Active and re-
active power controllers are needed to maintain 
quality of power supply under constant voltage and 
frequency. How to estimate and control this energy 
transfer between areas to ensure their balance is the 
question which is investigated in this paper. 

Being dependant on weather, photovoltaic (PV) 
and wind energy contributions need to be estimated 
and controlled [4]. A great deal of research has been 
devoted to energy estimation [5-19]. A methodol-
ogy for estimating the potential of rooftop solar pho-
tovoltaic was investigated [5]. Large-scale stand-
alone wind turbine energy estimation was proposed 
[6], including the accurate energy production esti-
mation. Mabel and Fernandez [7] developed the 
model for estimating energy yield from windfarms 
using artificial neural networks. The results showed 
that the model was an efficient energy yield estima-
tion tool for windfarms. An investigation was made 
of the analytical model and algorithm for tracing ac-
tive power flow based on an extended incidence 
matrix [8], which could be applied to any power net-
work. The daily solar energy production estimation 
for minimising energy storage requirements in PV 
power plants was proposed [9], in an optimised en-
ergy management strategy for reliably exploiting PV 
power plants. A study proposed the wind distribu-
tion and capacity factor estimation for wind turbines 
in coastal region of South Africa, looking at current 
methods and advances in forecasting wind power 
generation [10-11]. Monteiro et al. [12] presented a 
model estimating PV power generation and carried 
out performance analysis using three artificial intelli-
gence algorithms: a Kalman filter, artificial neural 
networks, and a support vector machine. The imple-
mentation of a new non-intrusive energy saving es-
timation has also been presented [13]. Wind re-
source estimation was conducted to estimate its an-
nual energy contribution based on windspeed and 
power curve models [14]. Photovoltaic and wind 

power estimation and economic load dispatch using 
the firefly algorithm was presented [15], where four 
test cases were used to validate the approach exper-
imentally. Active power deficit estimation in the 
presence of renewable energy sources was pre-
sented using DigSilent software simulator [16]. Bel-
tran et al. [17] proposed daily solar energy estima-
tion based on minimisation of energy storage 
needed for power plants. Active power estimation of 
PV generators for distribution network planning was 
proposed based on correlation models [18]. A wind 
estimation model was published based on a non-
standard extended Kalman filter (EKF) [19]. This 
Kalman filter was applied to estimate the maximum 
power extraction for variable speed wind turbines. 

The energy storage system power output can, as 
a main component in the new power system (mi-
crogrids), be estimated for its good management by 
increasing the power system reliability. Studies were 
made on battery state of charge estimation applying 
Kalman filter process [20 -25]. An online state of 
charge estimation for aerial lithium-ion battery packs 
based on the improved EKF was proposed [20] as 
an effective method estimating the state of the 
charge value for the lithium-ion-battery pack be-
cause of its capacity needs in high-power supply ap-
plications. The state of charge estimation of the bat-
tery pack using an improved extended Kalman filter 
is presented in [21]. The Kalman filter for state of 
charge estimation of lithium-ion battery based on a 
model uncertainty is analysed in [22]. The proposed 
model has better accuracy than with the unscented 
Kalman filter and adaptive unscented Kalman filter. 
State of charge estimation of lead acid batteries us-
ing an adaptive Kalman filter was applied in [23], 
where the model reduces the state of charge estima-
tion error and makes it more reliable than using an 
a priori process and measurement noise covariance 
values. The state of charge estimation of two differ-
ent commercial lithium-ion batteries was proposed 
in [24]. The state of energy and power capability es-
timation of a batteries using Kalman filter was pro-
posed in [25], essentially introducing a novel model-
based joint estimation approach against uncertain 
external operating conditions and internal degrada-
tion status of battery cells. A Kalman filtering state of 
charge estimation for battery management system 
based on a stochastic fuzzy neural network battery 
model was introduced in [26], reducing the maxi-
mum error when compared with the real state of 
charge obtained from the discharging test. 

Changing from one state to another, a power 
system requires for its management the use of more 
advanced techniques to ensure its development. 
The integration of renewable energy sources into the 
traditional network makes the power system man-
agement problem even more complex because of 
their irregularities and their dependence on weather. 
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Estimating the flow of energy, therefore, finds its 
place in the daily management of a new electricity 
grid. The system in the present study consists of two 
areas interconnected by two alternating current (AC) 
tie-lines to allow the flow of electrical energy. When 
the operation of the system is not disturbed, the en-
ergy transfer takes place from area one to area two 
to charge the battery. The production of electrical 
energy in the first area is provided by a hydroelectric 

plant and the windmill farm. The conventional ther-
mal power station and solar panels and battery stor-
age of an unused energy produces electrical energy 
in zone two. The configuration of the studied system 
is explained in Section 2. Problem formulation and 
modelling are detailed in Section 3, while Section 4 
presents the system data, simulations results and dis-
cussions. Finally, Section 5 gives conclusions. 
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Figure 1: Power system network model, where iPCC  and iP are respectively the point of common 
coupling and active power from each microgrid components. 

 

2. Configuration of the system studied 
The analysed system consists of two interconnected 
micro-grids (a two-area system) as shown in Figure 
1. Each area feeds its consumers and the tie-line al-
lows electric energy to flow between the areas. Each 
power area has several generation sources, which 
are closely coupled to form a coherent group. All 
power sources respond in unison to the changes in 
the load demand. The control area 1 is made by one 
conventional thermal power plant (synchronous 

generator, SG1) and a windfarm. Conventional 
large hydro (SG2), PV array and energy storage sys-
tem (ESS) are the energy source of area 2. The ac-
tive power from SG1 and SG2 are known:

126,117 21 == PMWP MW; wind power (from the 
windfarm in area 1) and solar power (from PV array 
area 2) are given under profile form which varies 
during the 24-hour period between the times 

],[ 0 ftt , which was taken as the control horizon in 
this study. 
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3. Problem formulation and modelling 
3.1 Problem definition 
Microgrid interconnection presents many benefits, 
such as improved reliability in supplying the load, so 
that the total power generated can supply the peak 
load demand of the interconnected system. The bi-
directional power flow via tie-lines allows the load 
demand to be met and well managed. The efficiency 
of the interconnected system is increased, and the 
generating units of each area cannot be overloaded 
by meeting the limits of the power reserve. The man-
agement of such interconnected system is more 
complex, despite its advantages. For stable opera-
tion, each area must be capable of feeding and to-
tally absorbing its own load; and the power flow in 
the tie-line must be kept equal to zero (frequency de-
viation equal to zero).  

A microgrid, while considering the varied pro-
duction and the power demand, presents high non-
linearities, changing dynamics and uncertainties that 
may require more advanced intelligent approach 
strategies, such as the optimal approach. Using 
more effective strategies would increase the perfor-
mance of these find of systems. Wind and PV are 
sources of energy working in turbulent conditions 
and an unforeseeable environment. The microgrid 
control operation must be adjusted to improve the 
reliability and effectiveness of microgrids which 
strongly depend on the chosen and applied control 
operation strategies. This study proposes the control 
of active power and frequency in two tie-lines linking 
two microgrids. The active power output of the SG, 
PV, and the system constraints of the state of charge 
(SOC) of the battery are used as control variables. 
The power balance and the limits of the generation 
source should be met during the control horizon. Ac-
tive power flowing in the tie-lines are considered as 
a state variable and the objective function is formu-
lated as the minimisation of the difference of active 
power in both. 

3.2 Mathematical modelling of the system 
To maintain balanced power network operation, the 
total energy generated must be controlled and cor-
rectly dispatched to meet the total power demand. 
The total active power generated in Figure 1: PG1 
and PG2 for the respective microgrids 1 and 2 is given 
by Equations 1 and 2. 

     ( ) ( ) ( )kPkPkPPG 3211 ++=  (1) 

where, for microgrid 1, ( )kP1  is the active power 
from the SG1 and ( )kP2  the active power from the 
wind farm. 

     ( ) ( ) ( )kPkPkPPGT 7652 ++=  (2) 

where, for microgrid 2, ( )kP5 is the power from the 
SG2, ( )kP6 the active power from the PV array and 

( )kP7 the power of the ESS (charge and discharge 
mode). All these powers are taken as control varia-
bles. 

The power ( )kP3 and ( )kP4 are considered as 
power flow in tie-lines and taken as state variables.  
The power deviations for each microgrid (or area) 
are given by Equations 3 and 4. The equations 
demonstrate the difference between the power gen-
erated and the demand of the system. 

    ( ) ( )kPkPP LGG 111 −=∆  (3) 

    )()( 222 kPkPP LGG −=∆  (4) 

where ( )kPL1  and ( )kPL2  are respectively the load 
demand in microgrids 1 and 2.  

The frequency deviation of the system is calcu-
lated using Equations 5 and 6 for each microgrid 
[27]. 

     
sys

M

K
P 1

1
∆

=∆ω   (5) 

     
sys

M

K
P 2

2
∆

=∆ω  (6) 

where 1ω∆ and 2ω∆ are the frequency difference for 
microgrids 1 and 2 respectively, and Ksys is the sys-
tem frequency characteristic constant of the micro-
grid.  

A tie-line is essentially used for energy exchange 
between control areas to provide inter-area support 
in severe conditions. If there is a mismatch between 
the power generated and demanded, a deviation in 
frequency for a particular area occurs. Since a tie-
line transports power in or out of an area, it must be 
accounted for in the incremental power balance 
equation of each area. The tie-line power deviation, 

TLP∆ , using the microgrid’s frequency deviation and 
synchronising power coefficient, )( SP , is calculated 
as follows [27]: 

     ( )∫ ∫ ∆−∆=∆ dtdtPP STL 21 ωω  (7)  

3.3 Proposed model 
The problem is solved using seven control variables 
that are active power from all the sources. The 
power from the windfarm and PV array are mod-
elled as a variable source, with a profile that varies 
from zero to its maximum for 24 hours. Each area 
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feeds its own load: load 1 is supplied by power from 
the wind farm and SG1, and load 2 is fed by power 
from PV and SG2. For two interconnected networks, 
there always comes a time of energy exchange be-
cause of load variation on two sides and the impact 
of interconnection of energy sources that depend es-
sentially on the weather. If power from the SG in ei-
ther area 1 or 2 is insufficient and power from the 
windfarm and PV cannot meet the active power load 
demand, the power from the battery ESS can be 
used to feed the load and to keep the system bal-
anced. 

The estimation-control model applied in this 
study will help to estimate and control the energy 
flow from PV and wind sources, and the energy ex-
change between the two areas. The formulation of 
power system state estimation and generation of 
data can be found in the literature [28-31]. Estima-
tion of energy (active power flowing) in the system 
is the first objective function. The optimal control ap-
proach is then applied by controlling active power 
flowing in the areas and power flow in the tie-lines 
as a second objective function and the maximisation 
of the use of renewable energy resources as a third 
objective function.  

3.3.1 Estimation process 
The EKF [26, 32-34] was chosen for the prediction 
of the tie-lines energy transfer and PV and wind en-
ergy flow output for the control purpose for 24 
hours, considering the high nonlinearities character-
ising the power system and for control purpose that 
must be done in dynamic manner.  

The power system can be defined using the dis-
crete system given by Equation 8. 

     
( )

( )kkk

kkkk

vxhy
wuxfx

,
,,11

=
= −+  (8) 

where kkkk vwux ,,, are state vector, input vector, 
vector of state noises and vector of measurement 
noises respectively. The function f  is used to cal-
culate the next state using the past estimated state. 
The function h  is used to calculate the predicted 
measure using the predicted state. Using the Jaco-
bian matrices (partial derivatives matrices), the co-
variance matrix of errors is determined using Equa-
tion 9. 

     

−

+
−

∂
∂

=

∂
∂

=

k

kk

x
k

ux
k

x
hH

x
fF

,1  (9) 

where kF  and kH are partial derivatives matrices of 
the system. 

The Jacobian matrix in Equation 9 is computed 
using the corrected and predicted states. These 
equations allow the system to be linearised around 
the estimated state values. Five steps were used to 
predict with the EKF [32-33]: 

 
• start process by updating equations 

( )0,,1 kkk uxfx −−

∧

= ; 

• calculate the covariance matrix of the a priori 
error k

T
kkkk QFPFP += +

−
−

1 ; 

• calculate the correction gain 

( ) 1−−− += k
T
kkk

T
kkk RHPHHPK ; 

• calculate the state vector a posteriori 







 −+= −

∧

−

∧

+

∧

kkkkkk xHyKxx ; and 

• calculate the covariance matrix of a posteriori 
error ( ) −+ −= kkkk PHKIP . 

 
The kkkk RQPx ,,,−

∧

 are a priori state estimate vec-
tor, a priori error covariance matrix, process noise 
covariance matrix and measurement noises covari-
ance matrix respectively. 

The first objective function is given by Equation 
10.  

     
( ) ( ) ( ) ( )∑

=






 −+−=

N

k
kPkPkPkPJ

1

2
6

^

6
2

2

^

21 ||||
  

 (10) 

where ( ),2 kP ( )kP6 , ( )
^

2 kP  and ( )
^

6 kP  are the active 
power from PV and wind, and their estimated values 
respectively. 

The second objective function is given by Equa-
tion 11. 

     ( ) ( )( ) CkPkPtJ
N

k
+−∆= ∑

=1
432 min .   (11) 

where t∆  is the sampling time, ( )kP3 and ( )kP4 are 
the power flow for tie-lines 1 and 2 respectively, and 

fBfC ∆×= is the frequency deviation constant, 
with Bf constant parameter depending to the fre-
quency and f∆ frequency variation. 

The third objective function is given by Equation 
12. 

     ∑−= RENJ min3   (12) 

The problem is formulated as a multi-objective 
function given by Equation 13, considering the con-
flict of the three objective functions in the model. 
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     321 JJJJ ++=  (13) 

3.2.2 Objective function 
Considering Equations 6 and 9, the objective func-
tion can be expressed by Equation 14. 

 (14) 

where ,,, 321 www and 4w are the weight factors. 
This is subject to the equalities constraint given 

in Equation 15. 

    ( ) ( ) ( ) ( ) ( ) ( ) ( ) LPkPkPkPkPkPkPkP =++++++ 7654321

 (15) 

Equation 15 represents the power balance of the 
two microgrids, represented by Equation 16. 

     ( ) ( )kPkPP LLL 21 +=  (16) 

This is subject to the following inequalities constraint 
given in Equation 17. 

     ( ) maxmin
iii PkPP ≤≤  (17) 

Each energy source is constrained by minimum 
and maximum values as specified by Equation 17. 
The ( )kPi  is the maximum power from each energy 
source during the normal network operation, ex-
pressed as Equation 18. 

     ( ) maxmin socksocsoc ≤≤  (18) 

Equation 18 represents the boundary constraint 
of the BESS. The SOC value must be kept less than 
the full capacity of the BESS maxsoc and larger than 
its minimum capacity minsoc as in Equation 19. 

     ( ) .0 max
ii PkP ≤≤  (19) 

Equation 19 represents the power flow constraint 
for the safety of operations in the power network. 
The power flow from each area cannot be negative 
or less than its allowable maximum value, as pre-
sented by Equation 20. 

     ,max
3

min
3 PP ≤ max

4
min

4 PP ≤  (20) 

Equation 20 ensures that the tie-lines keep the 
net energy exchange out of the area at its schedule 
value, for the area to absorb its own load variations. 

Equation 17 gives the power generation limits of
( )tP1 , ( )tP2 , ( )tP5 , ( )tP6  and ( )tP7 . Equation 18 

represents the limit of the BESS.  
The model has been applied using fmincon 

solver in Matlab because of the non-linearity of the 
power systems [28]. The canonical form is given by 
the basic conditions for the optimisation, as in Equa-
tion 21. 

   xf Tmin such that 
( ) ( )











≤≤
=≤

=
≤

bb UXL
XCeqXC

BeqXAeq
BXA

0,0
*
*

 (21) 

where ,,,,,,, bLCeqCBeqBXf bU are vectors; A ,
Aeq are matrices; bb UXL ≤≤  are lower and up-

per bounds; BAX ≤  is linear inequality constraint; 
beqAeqX =  is linear equality constraint; 

( ) 0≤XC  is nonlinear equality constraint; and 
( ) 0=XCeq  is a nonlinear equality constraint. 

The vector X is a binary integer vector repre-
sented by the power flow from different components 
of the system. 

The equality constraints given in Equation 12 
can be converted into matrix form as in Equations 
22 and 23. 
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L

L

P
P

B  (23) 

The overall proposed estimation-control system 
is given in Figure 2. The main steps of the optimisa-
tion-control process are: 

 
• Input parameters for EKF process (active power 

under profile form, voltage measurements and 
angles generated for estimation process) [28-
31]. 

• Start with estimation process. 
• Control and state variables definition. 
• Matrix A and vector B formulations (linear ine-

quality constraint). 
• Determination of the linear equality constraint 

(matrix Aeq and vector Beq). 
• Formulation of lower and upper bounds vec-

tors. 
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• Formulation of the state of charge matrix (Aeq1) 
and vector Beq1. 

• Starting point choice. 

• Evaluations process: (1) Objective function; (2) 
Constraints. 

• Iterations and decision process. 
• End of process. 
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Obtain Active Power Estimated
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X=X0
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END PROCESS

NO

YES

NO
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Input: FMINCON parameters: Matrices and Vectors 

Formulations, Constraints, Starting point Xo;

EKF Start Process: Update Equations;
Calculation of covariance matrix;

Calculation of Kalman Gain;
Calculation of State Vector posteriori and covariance 

matrix posteriori error;
Get the Active Power Estimated using profile form for 

wind and PV

 

Figure 2: Proposed control model.

3.2.3 Battery storage system state of charge  
The dynamic of the battery, charge and discharge 
gives its SOC. For the BESS in area 2 the SOC is 
given by Equation 24 [35]: 
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 (24) 

Using optimal control theory, Equation 22 can 
be translated into inequality constraints matrix for 
BESS as in Equation 25. 
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The linear vector constraint is represented by the 
vector in Equation 26. 
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4. Experimental analysis of the proposed 
model 

System data: The main generator SG in each area 
has the following rating power: P1(t)=117MW and 
P5(t)=126MW. Table 1 gives the variations on both 
during 24 hours because of power loss and other 
operating requirements. The rated frequency is 
50Hz. The SG1 is a thermal power plant and SG2 is 
a large hydro. The characteristics of the windfarm 
and PV and a group of loads are given and used 
under profile form. The data for hydro-electric 
power plant and thermal plant (steam turbine) can 
found in the literature [27, 35-36]. The EKF and 
fmincon were implemented in Matlab 2016 in a 
H97M-D3H system with a processor: Intel(R) 
Core(TM) i5 CPU @ 3.30GHz, 3301MHz, 4 Core(S), 
4 Logical Processor(S) and a RAM of 8.00 GB. 

5. Results and discussion 
Three perturbations models (sudden increase of 
load demand) were introduced in microgrid 1 and 
microgrid 2 simultaneously and separately to ob-
serve the different deviations of active power in the 
tie-lines. Table 1 presents the optimal power flow of 
the system in MW, particularly the estimated and 
produced (or real values) active power form wind 
and PV systems: P2

est and P2 for wind in area 1; P6
est 

and P6 for PV in area 2. Energy transfer occurs when 
there is a disturbance in either area: from microgrid 
1 to microgrid 2 at 12h00, 17h00, 18h00, 19h00, 
20h00, 21h00, from microgrid 2 to microgrid 1 at 
7h00, 13h00, 14h00, 16h00, and 17h00. The tie-
lines, meanwhile, are solicited and stressed by the 
transfer of energy coming from the energy storage 
system to cover the power deficit. 

 
Table 1. Power flow of the interconnected system. 

 Microgrid 1 Tie-Lines Microgrid 2 

H 
1P  

estP2
 

2P  
1GP  

1LP  43 PP −=  
5P  estP6

 6P  
2GP  

2LP  
7P  

1 116.6 40.53 39.79 156.39 122.32 34.07 125.3 0.00 0.00 125.30 123.50 35.87 

2 116.4 42.17 41.85 158.25 120.52 37.73 125.6 0.00 0.00 125.60 121.20 42.13 

3 116.5 43.23 41.01 158.75 118.25 40.50 125.3 0.00 0.00 125.30 123.82 41.98 

4 116.3 43.53 42.56 157.51 127.27 42.59 125.7 0.00 0.00 125.70 120.26 48.03 

5 116.5 43.31 44.86 161.36 123.25 38.11 125.5 0.00 0.00 125.50 118.45 46.16 

6 116.7 44.51 43.24 159.94 136.48 23.46 125.8 0.00 0.00 125.80 120.23 29.03 

7 116.6 41.68 39.86 156.46 158.21 1.75 125.3 11.35 9.27 134.57 131.24 1.58 

8 116.2 45.64 44.59 160.79 142.52 18.27 125.7 15.71 15.39 141.09 136.81 22.55 

9 116.4 42.47 41.25 157.65 145.87 11.78 125.6 26.18 26.11 151.71 143.73 19.76 

10 116.6 43.13 43.01 159.61 142.91 16.70 125.2 32.37 31.68 156.88 153.97 19.61 

11 116.4 41.37 40.93 157.33 151.39 5.94 125.5 40.51 38.71 164.21 163.58 6.57 

12 116.3 42.81 43.07 159.37 157.24 2.13 125.6 48.36 47.51 173.11 174.21 1.03 

13 116.8 43.71 43.23 160.03 169.42 9.39 125.4 53.76 54.10 179.50 176.54 -6.43 

14 116.5 42.87 43.83 160.33 174.89 14.65 125.7 56.31 54.02 179.72 171.81 -6.74 

15 116.3 42.13 41.86 158.16 157.15 1.01 125.3 51.74 49.58 174.88 168.91 6.98 

16 116.6 43.58 43.19 159.79 176.42 16.63 125.7 43.25 44.32 170.02 166.45 -18.06 

17 116.2 46.45 45.88 162.08 168.45 6.37 125.5 29.63 31.54 157.04 158.54 -7.87 

18 116.4 49.17 50.12 166.52 163.73 2.8 125.2 0.00 0.00 125.20 145.46 -17.46 

19 116.6 53.81 53.54 170.14 164.27 5.87 125.4 0.00 0.00 125.40 137.34 -6.07 

20 116.9 56.37 57.09 173.99 142.17 31.82 125.7 0.00 0.00 125.70 131.73 26.18 

21 116.7 54.87 53.46 170.16 131.84 38.68 125.5 0.00 0.00 125.50 126.54 37.64 

22 116.3 51.31 52.41 168.71 128.25 40.46 125.7 0.00 0.00 125.70 124.19 38.97 

23 116.6 52.54 50.92 169.14 130.37 38.77 125.2 0.00 0.00 125.20 124.46 39.51 

24 116.5 50.83 48.79 165.29 126.46 38.83 125.4 0.00 0.00 125.40 119.54 44.69 
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Figure 3: Active power estimated from wind and PV sources, where (a) = Active power estimated from 

wind source, and (b) = Active power estimated from PV source. 

Figure 4: Total active power generated and load demand in two areas, where (a) = total active power 
generated and load demand in area 1, and (b) = total active power generated and load demand in area 2. 

Figure 5: Battery state of charge and charging-discharging modes, where (a) = BESS state of charge, and 
(b) = BESS charging-discharging modes. 
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Figure 3 represents the energy estimation simu-
lations for wind 3(a) and for PV 3(b). Figure 4 gives 
in 4(a) and 4(b) the representation of load demand 
variation versus active power produced in areas 1 
and 2 while the interconnected system goes under 
disturbance mode (regime). Active power from the 
windfarm can be produced during 24h daily and is 
dependent on the wind speed. This can be seen 
from Figure 3(a), which gives the variations of the 
active power production for 24 hours. 

The production of active power using PV arrays 
is only possible from 6 am to 5 pm or 6 pm, when-
ever there is sunshine. The simulations results pre-
sented in Figure 3 (a) and (b) show the estimation 
of the wind and PV output during 24 hours. Based 
on the state estimation model using EKF, the pre-
dicted output values of wind and PV are well esti-
mated except few errors. The estimation process was 
conducted with satisfactory results. One of the main 
goals of the proposed controller was to continuously 
supervise the interconnected system and the flow of 
energy from the windfarm and PV plant to the mi-
crogrids and to do their estimations. 

The energy storage system state of charge is 
given in Figure 5, which presents its dynamics for 24 
hours (charge and discharging modes). Figures 6(a) 
and 6(b) present the active power deviation in tie-
lines 1 and 2 with disturbance in areas 1 and 2. The 
active power variation in tie-lines 1 and 2 when mi-
crogrid 2 (area 2) is perturbed is given in Figure 6(c) 
and 7(a). Figures 7(b) and 7(c) represent the active 
power variation in tie-lines 1 and 2 when microgrid 
1 is disturbed. 

Experimental observations: A classical per-
turbation system, for the first case, perturbation was 
introduced in area 1 and area 2. The objective was 
to test the robustness of the control strategy against 
a sudden active power demand variation (load) at 
the same time in both areas. Figure 6 (a) and 6 (b) 
indicates that, despite harsh conditions, the control-
ler had a better performance. The active power con-
trol deviation was effectively damped to zero with 
small oscillations in a very short time: 3 s was 
enough to regulate the system.  

Similar analyses (case 2 and case 3) were carried 
out using a disturbance model in area 1, Figures 6(c) 
and 7(a); and in area 2, Figures 7(b) and 7(c). Based 
on the three cases studied, the deviations of the ac-
tive power in the tie-lines 1 and 2 are noted and 
controlled. For the case where both microgrids 1 
and 2 are disturbed at the same time, the ripples 
showing the deviations in power in tie-line 1 goes to 
≈ –3.7MW and tie-line 2 goes to ≈ –5.1MW before 
starting stability process (Figure 6(a) and 6(b)). In 
the case where microgrid 1 is disturbed alone, the 
tie-lines 1 and 2 vary differently from s0 to s1 for 
tie-lines 1 and 2 from s5.2 to s3  (Figure 6(c) and 
7(a)). When microgrid 2 is disturbed alone, the rip-
ples showing the deviations of active power in tie-
lines 1 and 2 are recorded between s0  and s1  (Fig-
ure 7(b) and 7(c)). The control process was per-
formed in short time (3s for area 1 or microgrid 1 
and 2s for area 2). The active power controller input 
in areas 1 and 2 was efficiently increased to match 
the load demand, without too much overshoots and 
oscillations. The active power deviation in tie-lines

Figure 6: Active power deviation in tie-lines, where (a) = active power deviation in tie-line 1,  
(b)= active power deviation in tie-line 2, (c) = active power deviation in tie-line 1. 
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Figure 7: Active power deviation in tie-lines, where (a) = active power in tie-line 2 deviation,  
(b) = active power tie-line 1 deviation, (c) = active power tie-line 2 deviation. 

 
was driven to zero shortly after disturbance oc-
curred, with less oscillations. The perturbed system 
was regulated after a short time. 

6. Conclusion 
This study has presented an energy flow estimation-
control model of two interconnected microgrid sys-
tems, estimating the output power from wind and a 
photovoltaic array and minimising the difference in 
active power flow between two AC tie-lines. The ro-
bustness, reliability and nonlinearities associated 
with the control power system were ensured when 
solving the problem. The results graphically showed 
that the tie-lines power deviations due to the three 
disturbances introduced in areas 1 and 2 were con-
trolled and limited. The response curves show the 
deviations in power system in the respective areas. 
It can be concluded from the analysis of these that 
the proposed optimal active power control regulator 
was effective in settling the change in the power sys-
tem network to the required value in a reasonably 
short time. The controller model has led to the bal-
ance of the total active power generated and power 
demand of the studied system. 
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