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Abstract 
Wind conditions in South Africa are suitable for 
small-scale wind turbines, with wind speeds below 7 
m.s−1. This investigation is about a methodology to 
optimise a full wind turbine using a surrogate model. 
A previously optimised turbine was further opti-
mised over a range of wind speeds in terms of a new 
parameterisation methodology for the aerodynamic 
profile of the turbine blades, using non-uniform ra-
tional B-splines to encompass a wide range of possi-
ble shapes. The optimisation process used a genetic 
algorithm to evaluate an input vector of 61 variables, 
which fully described the geometry, wind conditions 
and rotational speed of the turbine. The optimal per-
formance was assessed according to a weighted co-
efficient of power, which rated the turbine blade’s 
ability to extract power from the available wind 
stream. This methodology was validated using 
XFOIL to assess the final solution. The results 
showed that the surrogate model was successful in 

providing an optimised solution and, with further re-
finement, could increase the coefficient of power ob-
tained. 
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1. Introduction 
In a study by Cencelli [1], multi-objective optimisa-
tion was looked at for small wind turbines, typically 
operating at wind speeds below 7 m.s−1. Cencelli 
initially optimised the aerodynamic performance of 
this turbine by selecting various standard wind tur-
bine blade profiles, blending their geometries, and 
calculating the lift and drag coefficients of the 
blended profiles by means of the open access soft-
ware XFOIL [2]. Wise [13] used a family of airfoils 
(NACA four digit series) for optimisation of a similar 
small turbine. As Wise limited the study to a single 
family or airfoils, Wessels [12] asked if the pre-selec-
tion of foil profiles unnecessarily constrained the 
outcome and therefore sought to describe a general 
foil without referring to an existing foil type. Wessels 
compared the representation of airfoils by means of 
non-uniform rational B-splines (NURBs), describing 
either their camber and thickness distribution or the 
upper and lower surface XY co-ordinates to their 
standard definitions. Wessels was able to describe 
foils used by both Wise and Cencelli, and others, 
through NURBs. Cencelli and Wise made use of 
blade element momentum theory to model the wind 
turbine and gradient-based optimisation methods. 
The same turbine model was utilised, however, as 
the number of design variables significantly in-
creased, various optimisation methods were exam-
ined. Cencelli and Wise provided a suitable baseline 
and allowed for a comparison of achieved optima. 
Cencelli optimised the foil at each station individu-
ally. Thereafter the combination of stations into a 
single blade was optimised for chord length and twist 
to obtain the best annual energy production (AEP) 
based on CP values. This meant that five separate op-
timisation tasks had to be completed. Wise’s ap-
proach was limited to a specific family of blades 
(NACA 4-digit) and combined the optimisation into 
one task. Wise also made use of a surrogate to de-
scribe the turbine system and changed the objective 
from the AEP to a non-weighted average of the 
blade CP and used random starting points to allevi-
ate the possibility of local minima, as a traditional 
gradient based approach would be more susceptible 
to these minima and required multiple random start-
ing points. To build the surrogate model Wise used 
the support vector regression technique (SVR). 

The aerodynamic design of a wind turbine for 
specific conditions is a complex problem with many 
design variables such as blade disc diameter, speed 
of rotation, blade section shape and wing planform 
shape [14]. Blade section shapes are often selected 
from existing standard families of blades.  
This investigation presents a method that deter-
mines original blade profiles during the optimisation 
process. The blade profile, camber line and thick-
ness distributions were each described by NURBs. 

The description of each blade profile requires 13 var-
iables at each of the four design radii, excluding the 
variation in chord length and station orientation an-
gle, leaving 15 variables per station. The optimisa-
tion adjusted these variables, resulting in new foil 
profiles, sizes and angles of attack at each station. 
Optimisation of such a system is challenging due to 
the large number of design variables. Each new pro-
file must then be evaluated for lift and drag coeffi-
cients, CL and CD, which can be a time-intensive 
process. The blade element momentum theory, 
given the CL and CD at each blade section radius, 
allows for the calculation of characteristics of a full 
blade for a given flow condition. The power coeffi-
cient, CP, of a turbine can be determined as well as 
its annual power production for a given wind veloc-
ity probability distribution over the period, given the 
CL and CD. In addition to this, optimisation tech-
niques can be applied to find a combination of blade 
shape and turbine characteristics (rotational speed, 
blade length, blade twist and pitch angle.) that 
would result in the maximum average CP. In this in-
vestigation a surrogate was created to provide the 
CL and CD for a wide range of foil shapes quickly, 
using SVR techniques based on coefficients ob-
tained from an open source airfoil section perfor-
mance prediction code[2]. 

2. Methodology 
2.1 Blade element momentum theory 
The blade element momentum theory partitions a 
rotating blade into 2D annular rings as shown in Fig-
ure 1. This theory builds on the actuator disk model 
described by Hansen [4] and assumes that there is 
no influence adjacent to the ring that affects the co-
efficients of lift or drag and, therefore, enables piece-
wise analysis of a blade as discrete airfoil sections, 
as shown in Figure 2. The blade element momen-
tum examines the flow around a foil using the mo-
mentum equation and derives equations for the 
forces acting on the blade. It also describes induction 
factors, variables used to account for changes in both 
the axial (a) and angular momentum (a'), as the flow 
moves through the blade disc. The forces on the 
blade are expressed in terms of the known flow con-
ditions and the induction factors, as yet unknown. 
An iterative process is preformed to calculate these 
induction factors in order to balance the Bernoulli 
equation before and after the disk. Furthermore, 
there are adjustment factors that are used to deter-
mine the induction factors. The Prandtl’s tip loss fac-
tor is used to correct the assumption of infinite blades 
and Glauert’s correction factor is used to ensure the 
axial momentum factor does not violate the simple 
momentum theory. This process is described in full in 
Hansen [4]. The algorithm used to calculate the 
blade performance is described in Table 1. 
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Table 1: The algorithm used to calculate the blade performance. 

Item  Definition 
a Initialize a and a' 
b Compute flow angle, φ 
c Determine the angle of attack α 
d Get CL and CD associated with α 
e Compute normal (CN ) and tangential (CT ) force coefficients 
f Recalculate a and a' including Prandtl’s tip loss factor and Glauert correction 

g If the value of induction factors has varied beyond a pre-set tolerance, go back 
to step 2 

h Determine loads on portion of blade (Ft) 
 

Figure 1: Control volume used in blade element momentum theory [4]. 

 
Figure 2: Discretised blade; each airfoil is considered independent of its neighbour. 
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Assuming there is a linear variation in each radial 
station (r), the tangential load between these points 
can be estimated according to Equation 1. 

 𝐹𝐹𝑡𝑡 = 𝐴𝐴𝑖𝑖𝑟𝑟 + 𝐵𝐵𝑖𝑖   (1) 

where i is the current position and Ai, Bi are defined 
according to Equation 2.  

 𝐴𝐴𝑖𝑖 =  𝐹𝐹𝑡𝑡,𝑖𝑖+1+ 𝐹𝐹𝑡𝑡,𝑖𝑖
𝑟𝑟𝑖𝑖+1−𝑟𝑟𝑖𝑖

      𝐵𝐵𝑖𝑖 = 𝐹𝐹𝑡𝑡,𝑖𝑖𝑟𝑟𝑖𝑖+1−𝐹𝐹𝑡𝑡,𝑖𝑖+1𝑟𝑟𝑖𝑖
𝑟𝑟𝑖𝑖+1−𝑟𝑟𝑖𝑖

  (2) 

 

This in turn allows a definition of the torque contri-
bution for each portion between ri and ri+1 as in 
Equation 3. 
 

   𝑀𝑀𝑖𝑖,𝑖𝑖+1 =  �1
3
𝐴𝐴𝑖𝑖𝑟𝑟3 + 1

2
𝐵𝐵𝑖𝑖𝑟𝑟2�

𝑟𝑟𝑖𝑖

𝑟𝑟𝑖𝑖+1
 (3) 

The total torque is then worked out by multiplying 
the cumulative contribution of Equation 3 by the 
number of blades given by Equation 4. 
 

     𝑇𝑇𝑡𝑡𝑡𝑡𝑡𝑡 = 𝐵𝐵∑ 𝑀𝑀𝑖𝑖,𝑖𝑖+1
𝑛𝑛−1
1  (4) 

 
The torque is then used to determine how much 

power is produced for the given regime, followed by 
normalisation to give a non-dimensionalised co-effi-
cient of power according to Equation 5. 

     𝐶𝐶𝑝𝑝 =  𝑇𝑇𝑡𝑡𝑡𝑡𝑡𝑡𝜔𝜔
0.5𝜌𝜌𝑉𝑉3𝜋𝜋𝑟𝑟2

  (5) 

2.2 Optimisation 
This investigation took a step further than Wise [13], 
with the blade profiles not limited to a specific family 
or combination of families. Instead by using a NURB 
description of a foil, as detailed by Wessels [12], the 
shape had more scope for variation. The optimisa-
tion problem is stated as in Equation 6. 

     𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀 ∶ ∑𝐶𝐶𝑝𝑝 × 𝑊𝑊

𝑀𝑀. 𝑡𝑡:

𝑐𝑐 ∈  [0.01, 1]
𝜔𝜔 ∈  [70, 300]
𝛼𝛼 ∈  [0, 25]
𝛽𝛽 ∈ [0, 25]

  (6) 

A Weibull weighting function (W) based on wind 
speed was applied to the CP values, and the summa-
tion was then set as the objective function. The CP 
function value was based on blade shape (as defined 
by Equations 8–10 in Section 2.4), flow regime and 
angle of attack, resulting in an input vector of 61 var-
iables for simultaneous optimisation. The constraints 
in this optimisation related to chord length (c), rota-
tional speed (ω), angle of attack (α) and twist (β) in 
the blade. The starting population for optimisation 

included the final solution of Wise, in the form of the 
seed vector. A genetic algorithm was used to do the 
optimisation in order to reduce the effect of local 
minima and better sampling of the large domain. 

2.3 Genetic algorithm 
The optimisation is performed with a genetic 
breeder algorithm. The algorithm requires an objec-
tive function, the upper and lower limits of all the 
parameters within the objective function and an ini-
tial population. In this investigation a starting vector 
was used to create a population of equally sized vec-
tors. These vectors were random ‘mutations’ of the 
original, with the degree of variation also being a 
value the user could set. The original population in-
cluded the initial seed vector. The population spread 
increased with the magnitude of mutation allowing 
for a greater variation of test vectors. The next gener-
ation was obtained by selecting a percentage of the 
best performing members of the population and 
breeding them. The threshold controlling the per-
centage of members selected for breeding was a user 
defined variable. In addition there were ‘elite’ mem-
bers of each generation, which were guaranteed a 
place in the future generation. Once the solution im-
provements between generations was within toler-
ance, the best performing vector of the last genera-
tion was returned as the optimised result [9]. 

In this investigation a population size of 50 was 
set per generation. A threshold for breeding selec-
tion was set at 15% and the four best performing 
vectors formed the elite sample set. After testing var-
ious algorithm settings, it was found that a mutation 
factor of 0.2 with a total of 12 generations provided 
the best results. 

2.4 Non uniform rational B-splines 
The NURBs configurations are able to accurately 
and reliably represent the shape of an airfoil. These 
configurations describe a complex curve through a 
few x, y coordinates, subsequently lending them-
selves to optimisation, with minor adjustments re-
sulting in a wide range of curves. A full description 
of NURBs is given by Wessels [12], while also de-
scribing the methodology for creating airfoils. The 
adopted methodology was the thickness-camber ap-
proach, where two NURBs were used to describe the 
thickness and camber curves respectively much like 
the NACA four digit scheme; the results of this NURB 
description are shown in Figure 3. This foil was built 
by defining the thickness curve (Cthi (u)) and a cam-
ber (Ccam (u)) curve according to Equation 7, for a 
non-periodic knot vector (u) between 1 and 0, a 
point on each curve is found in terms of the x y co-
ordinate system. 

     𝐶𝐶𝑡𝑡ℎ𝑖𝑖(𝑢𝑢) =  �
𝐶𝐶𝑡𝑡ℎ𝑖𝑖,𝑥𝑥
𝐶𝐶𝑡𝑡ℎ𝑖𝑖,𝑦𝑦

�   𝐶𝐶𝑐𝑐𝑐𝑐𝑐𝑐(𝑢𝑢) =  �
𝐶𝐶𝑐𝑐𝑐𝑐𝑐𝑐,𝑥𝑥
𝐶𝐶𝑐𝑐𝑐𝑐𝑐𝑐,𝑦𝑦

�   (7) 
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Figure 3: An airfoil created from thickness and camber NURBs curves, with control points. 

 
The upper and lower surfaces were, thus, created by 
adding/subtracting the y-coordinate of the thickness 
curves perpendicularly from the camber curve, ex-
pressed as Equation 8. 

 
     𝑈𝑈𝑥𝑥 =  𝐶𝐶𝑐𝑐𝑐𝑐𝑐𝑐,𝑥𝑥 −  𝐶𝐶𝑡𝑡ℎ𝑖𝑖,𝑦𝑦 sin𝜃𝜃  

     𝐿𝐿𝑥𝑥 = 𝐶𝐶𝑐𝑐𝑐𝑐𝑐𝑐,𝑥𝑥 +  𝐶𝐶𝑡𝑡ℎ𝑖𝑖,𝑦𝑦 sin𝜃𝜃  

 

     𝑈𝑈𝑦𝑦 =  𝐶𝐶𝑐𝑐𝑐𝑐𝑐𝑐,𝑦𝑦 + 𝐶𝐶𝑡𝑡ℎ𝑖𝑖,𝑦𝑦 sin𝜃𝜃  
     𝐿𝐿𝑦𝑦 = 𝐶𝐶𝑐𝑐𝑐𝑐𝑐𝑐,𝑦𝑦 −  𝐶𝐶𝑡𝑡ℎ𝑖𝑖,𝑦𝑦 sin𝜃𝜃   (8) 

 
where the angle θ is the inclination of the camber 
curve, which was found using a central finite differ-
ence method and calculated with Equation 9. 

 

  𝜃𝜃 =  tan−1 �
𝜕𝜕𝐶𝐶𝑐𝑐𝑐𝑐𝑐𝑐,𝑦𝑦

𝜕𝜕𝜕𝜕
𝜕𝜕𝐶𝐶𝑐𝑐𝑐𝑐𝑐𝑐,𝑥𝑥

𝜕𝜕𝜕𝜕

� ≈  tan−1 �
∆𝐶𝐶𝑐𝑐𝑐𝑐𝑐𝑐,𝑦𝑦

∆𝜕𝜕
∆𝐶𝐶𝑐𝑐𝑐𝑐𝑐𝑐,𝑥𝑥

∆𝜕𝜕

�    (9) 

The trailing edge and leading edge had fixed co-
ordinates to also control the ambiguity associated 
with angle of attack when describing a foil through 
NURBs. This meant the number of control points (x 
and y coordinates) to describe each of the thickness 
and camber curves were six and five respectively, 
but the total number of variables amounted to only 
13. The reduced number of variables required is at-
tributed to fixed leading and trailing edges. In the 
Cthi matrix points 0 and 5 are fixed in space and the 
x coordinate of point 4 is set to 0. In the Ccam points 
0 and 4 are also fixed, as shown in Equation 10. 

     𝐶𝐶𝑡𝑡ℎ𝑖𝑖 =  

⎣
⎢
⎢
⎢
⎢
⎢
⎡
𝑀𝑀 𝑦𝑦
1 0
𝑋𝑋 𝑌𝑌
𝑋𝑋 𝑌𝑌
𝑋𝑋 𝑌𝑌
0 𝑌𝑌
0 0⎦

⎥
⎥
⎥
⎥
⎥
⎤

𝐶𝐶𝑐𝑐𝑐𝑐𝑐𝑐 =

⎣
⎢
⎢
⎢
⎢
⎡
𝑀𝑀 𝑦𝑦
1 0
𝑋𝑋 𝑌𝑌
𝑋𝑋 𝑌𝑌
𝑋𝑋 𝑌𝑌
0 0⎦

⎥
⎥
⎥
⎥
⎤

  (10) 

2.5 Surrogates 
Surrogates are simplified mathematical models of a 
more complex system. These models reduce time in 
calculations, remove numerical noise and make it 
easier to solve larger problems by reducing the cou-
pling of complex interactions to single functions. In 
particular the use of such a model for this problem 
drastically reduces the run-time during optimisation. 
As the optimisation process calls for a model evalua-
tion many times while finding the optimum, surrogate 
models were used to provide a fast response. SVR ap-
peared to be robust and achieved good accuracy 
through the availability of parameters that could be 
fine-tuned [5, 6]. To build the SVR surrogate, the 
model needs to be trained and adjusted accordingly 
based on a testing set. The training and testing data 
sets can be one large set or two distinct sets. The 
latter is preferred, in that there is no bias on the 
model score when evaluating the test data. 

The workspace for the foil involved 13 control 
points, as outlined in Equation 10, an angle of attack 
and a Reynolds number, resulting in a 15-variable 
surrogate model. Data sets for training were created 
in XFOIL using the latin hypercube sampling tech-
nique and the testing data was generated in the 
same program but through randomised selection. In 
doing so the training set was ensured to more effec-
tively sample the workspace [7], while the test set 
may have overlaps but provides a suitable selection 
for the testing criteria. 

XFOIL is an open source package that uses the 
panel method and boundary layer calculations on 
the blade surface to determine coefficients of lift and 
drag for a prescribed airfoil. The package requires a 
foil definition in the form of a text file, angle of attack 
and flow conditions. The run-time of XFOIL is not 
fixed but the user can limit the number of iterations 
to perform. If the program fails to converge before 
the maximum iterations are reached it will not pro-
vide any data for analysis. The result of XFOIL is a 
table listing the angle of attack and corresponding 
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CL and CD values. The program is, however, not 
very robust and has a tendency to hang or crash. 
The possibility of hanging or failure meant the pro-
gram was not suitable for direct use in optimisation. 
A control program written in Python [3] uses the latin 
hypercube sampling to select data points for testing 
and training. The number of points in each set is 
controlled by the user and listed in an array. The ar-
ray is cycled through a multi-threading module. The 
multi-threading is done to save time and also as a 
safeguard against the XFOIL program: should it 
hang while evaluating a data point, another thread 
can continue down the array. The second safeguard 
against XFOIL crashing was to handle it in a robust 
manner. If the user prescribed an angle of attack the 
program would be instructed to test a sequence of 
α’s, and output the result. This approach assumes 
that XFOIL may fail at or near the desired α, but it 
would not fail at all locations near the point of inter-
est. Based on the output, a line can be extrapolated 
through the data points and the angle of attack in 
question can be interpolated. 

The Scikit-learn module [8] is used to build the 
SVR models. This module allows for a choice of ker-
nel and its related build parameters (kernel degree, 
epsilon tube, penalty factor, etc). The SVR can be 
expressed as Equation 11. 

 

         𝑀𝑀𝑀𝑀𝑀𝑀. ∶ �
− 1

2
∑ (𝛼𝛼𝑖𝑖 − 𝛼𝛼𝑖𝑖∗)�𝛼𝛼𝑗𝑗 − 𝛼𝛼𝑗𝑗∗�𝐾𝐾�𝑋𝑋𝑖𝑖𝑋𝑋𝑗𝑗�𝑘𝑘
𝑖𝑖,𝑗𝑗=1

−𝜀𝜀 ∑ (𝛼𝛼𝑖𝑖 − 𝛼𝛼𝑖𝑖∗) + ∑ 𝑌𝑌𝑖𝑖𝑘𝑘
𝑖𝑖=1

𝑘𝑘
𝑖𝑖=1 (𝛼𝛼𝑖𝑖 − 𝛼𝛼𝑖𝑖∗)

𝑀𝑀. 𝑡𝑡: �∑ (𝛼𝛼𝑖𝑖−𝛼𝛼𝑖𝑖∗)𝑘𝑘
𝑖𝑖=1  

(𝛼𝛼𝑖𝑖,𝛼𝛼𝑖𝑖∗) ∈  [0,𝐶𝐶]                                (11)
  

 
where the C is the penalty factor and k(xi, xj ) is the 
kernel function. Within the SVR module the radial 
basis function kernel is chosen. Initial testing shows 
it to have a better score (R2), a valuation of how 
good the regression performed, than for example a 
polynomial kernel. It was found that the surrogate 
was most responsive to the penalty factor and the 
kernel coefficient γ as used in the radial basis func-
tion kernel given by Equation 12. 

     𝐾𝐾�𝑀𝑀𝑖𝑖𝑀𝑀𝑗𝑗� = exp� −𝛾𝛾�𝑀𝑀𝑖𝑖−𝑀𝑀𝑗𝑗��
2
  (12) 

These two parameters were then evaluated 
through a multi-grid analysis which ran through nu-
merous combinations of C and γ while trying to im-
prove the score. The score of the surrogate, also 
known as the coefficient of determination (R2), is a 
measure of variance between model predictions and 
test set targets. The training data set is used during 
the grid analysis and a separate test data set created 
in XFOIL is then used to evaluate the grid refined 
surrogate. 

The oversight program implemented in Python 
allows for the development of various size data sets 
in a relatively short time. The latin hypercube sam-
pling prescribed data set was 900 samples in size and 
90% of those points were successfully evaluated 
through XFOIL. The built-in libraries in Python did 
not handle data sets larger than this, effectively set-
ting the ceiling on data set size. Figures 4 and 5 show 
an example of surrogate scores based on a sample 
set of 360 points, the red line indicating where the 
predicted values and target values are to meet. Due 
to the size of the data sets the scores are relatively 
low, and we have noticeable scatter on Figure 5. 
When comparing these to Figures 6 and 7, which are 
based on a sample set of 822 points, there is im-
provement in the scores, with the prediction points 
tighter along the line. 

Figure 4: Predicted values vs the target values  
for CD surrogate, 360 samples. 

Figure 5: Predicted values vs the target values  
for CL surrogate, 360 samples. 
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Figure 6: Predicted values vs the target values  
for CD surrogate, 822 samples. 

2.6 Using the NURBs to build surrogates 
Each foil is described by 13 variables. The upper and 
lower limits of these variables have been determined 
above and are used to define the solution space. Fig-
ure 8 shows the solution space of the thickness and 
camber curves in terms of their possible [X, Y] co-
ordinates, as illustrated in Equation 10. Each control 
point is allowed to be within zones depicted. This fig-
ure also illustrates by way of example how the control 
points affect thickness and camber curves. The thick-
ness curve has seven variables, the x position of the 
nose being fixed, and the camber curve has six var- 

Figure 7: Predicted values vs the target values 
for CL surrogate, 822 samples. 

iables. The limits for viable co-ordinates were de-
fined as a selectable attribute in Python. The solu-
tion space shown approximates the shape associ-
ated with a foil with tapering edges. Equation 14 
shows the form of the input vector to the surrogate. 
It comprises the Reynolds number (Re), the X and 
Y coordinates for the thickness and camber curves 
as stated in Equation 10, and the angle of attack (α). 

 
𝑋𝑋 =  [𝑅𝑅𝑀𝑀,𝐶𝐶𝑡𝑡ℎ𝑖𝑖𝐶𝐶𝑐𝑐𝑐𝑐𝑐𝑐𝛼𝛼]     

  (14)

Figure 8: Zones indicating possible control point locations in which the 13 variable describing the foil 
could lie, with the tapering edges similar to actual foil shape. 
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2.7 Multiple preference points method 
As stated earlier, the surrogate models’ prediction is 
heavily based on the number of sample points. Gen-
erating these sample points can take time, especially 
if utilising the optimum latin hypercube method. A 
structured latin hypercube tries to achieve the same 
effectiveness while reducing the computational time 
[13]. The problem is one of effectively sampling the 
entire range of possible solutions. If there is a weak 
area of prediction where the surrogate may give in-
correct or highly optimistic results, the optimiser 
would exploit this. A way to counteract this effect is 
to sample in the areas where the optimiser will drive 
the solution. As this information is not available be-
forehand, the MPPM approach is used to increase 
the sample size while optimising. This method of sur-
rogate building, along with others, is described in 
Shao [10]. 

Initially, a small sample set of 300 is used to build 
the surrogate model and then run through the ge-
netic algorithm. The genetic algorithm (GA) runs for 
12 generations, due to the percentage error reaching 
the maximum allowable value of no more than 10% 
(see Figure 9), and at the end of each generation the 
best performing vector is logged along with its CP 
value. This log is used to identify any large changes 
in CP, enabling identification of significantly differ-
ent solution vectors which are then added to the in-
itial training set. One run through the GA constitutes 
a single iteration, at the end of which the surrogate 
is updated. This inherently random, yet evolution-
ary, system means there is no set number of points 
added to the training set at each update. The most 

significant changes usually occur early in the optimi-
sation and after a certain generation the error be-
came too large. Testing revealed a suitable cut-off in 
terms of how many generations the GA has to run. 

3. Results 
The surrogate based on 822 points was run once 
through the GA. It was capable of predicting reason-
able CL and CD values but, as seen in Figures 6 and 
7, there was still scatter in both models. The surro-
gate was tested against XFOIL for various cases and 
its accuracy was not sufficient. Thus, when run 
through the optimiser the improvements seen were, 
in fact, not real. The surrogate ventures into territory 
not sufficiently sampled initially. Any ill-defined re-
gion within the surrogate model will be exploited by 
the optimiser during run time. The history plot of the 
optimiser is seen in Figure 10. Key points are then 
run through XFOIL and plotted on the same graph. 
This highlights the inaccuracies in using this surro-
gate. 

The single-build approach was not effective, so 
MPPM was adopted. When using the GA, the ma-
jority of the new data points were from early gener-
ations. Figure 10 highlights the increasing discrep-
ancy between surrogate and XFOIL after successive 
generations, and Figure 11 shows the flow diagram 
for the GA sequence. For the MPPM method the 
generational limit was set at 12. This was after testing 
found the average error was approximately 9% in this 
generation. Figure 12 shows the decrease in an aver-
age error from 6.6% to 3.5%, through using MPPM 
(flow diagram seen in Figure 13). The results pre-

 

Figure 9: Standard deviation for the error between the surrogate and XFOIL CP values per generation. 
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Figure 10: Genetic algorithm history and XFOIL comparative results for a single-build approach. 

 
sented in Figure 14 are for a surrogate with 1088 
samples. While the overall error is reduced, the de-
viation has increased. The MPPM approach is uti-
lised to minimise the error but there is a cumulative 
affect still present. This is assumed to be the cause 

of the deviation seen in Figure 12. Figure 14 shows 
the XFOIL and updated surrogate data to be more 
closely aligned. This validated the MPPM approach 
and allowed confidence to be expressed in the surro-
gate predictions. 

 

 
Figure 11: The GA process. 
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Figure 12: The standard deviation for the error between the surrogate and XFOIL CP values per iteration. 

 

 
Figure 13: The MPPM process. 
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Figure 14: Genetic algorithm history and XFOIL comparative results with optimised surrogate. 

 
3.2 Final result 
Figure 15 shows the starting Cp curves, from the so-
lution presented by Wise [13], and the final Cp 
curves after optimisation. The curves show the CP as 
reported from both XFOIL and the iteratively up-
dated surrogate model. Wise’s final solution was a 
blade optimised to work between 5 and 6 m.s−1 

while, in comparison, this solution was over a larger 
wind speed range. Over the 5–6 m.s−1 range Wise 

has a higher CP with a drop after 6 m.s−1. The final 
Cp curve is consistent over the entire range of wind 
speeds. The optimiser increased the higher wind CP 
while lowering the peak achievable CP. 

Figure 16 shows the optimised blade shape over-
laid on the original shaped specified by Wise. No-
ticeable differences include a longer foil at the hub 
(Fig 16a), a narrower tail in the mid-section (Fig 
16b), and a more cambered tip (Fig 16d).

 

 
Figure 15: The CP at each wind speed. 
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Figure 16: Plots of original and optimised foils for final design, where (a) = foil at station closest to the 
hub; (b) = foil at second station from the hub; (c) = foil at third station from the hub; and (d) = foil at 

fourth station from the hub. 

 

4. Conclusions 
This paper sought to optimise the aerodynamic de-
sign of a small wind turbine. The methodology was 
based on the use of a surrogate model, which incor-
porated both the geometric constraints of the blade 
and the turbines operation conditions. Surrogate 
models have been shown as effective tools when 
coupled with optimisation algorithms. The compari-
son of the final result with XFOIL meant the solution 
had to be run while getting lift and drag variables 
from XFOIL. This process highlighted the surro-
gate’s time gains, as the model took approximately 
36 minutes to run with XFOIL but less than one mi-
nute using the surrogate. The quality of the surrogate 
greatly affects the outcome, and care must be taken 
in how it is built. Attention must be given to the train-
ing and testing data set, ensuring that it sufficiently 

samples the design space. The iterative approach of 
MPPM proved successful in reducing surrogate error 
with minimal additional data points. However, the 
approach taken to identify the most preferred points 
should be adjusted, as it did not take sufficient data 
near the end of each optimisation run. Based on 
these results it can be assumed that additional itera-
tive updates to the surrogate through MPPM would 
improve its accuracy. The limitation in this project 
was the use of built-in Python libraries. The Python 
library began hanging once training sets exceeded 
900 points. A customised library could overcome 
this and allow for several updates on the surrogate. 
Overall, the methodology to wind turbine optimisa-
tion has proven effective, as it improved on a previ-
ously optimised solution. 

 

(a) 

(c) (d) 

(b)
0) 
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