
Abstract

The two-parameter Weibull probability distribution

function is versatile for modelling wind speed fre-

quency distribution and for estimating the energy

delivery potential of wind energy systems if its shape

and scale parameters, k and c, are correctly deter-

mined from wind records. In this study, different

methods for determining Weibull k and c from wind

speed measurements are reviewed and applied at

four sample meteorological stations in Zimbabwe.

The appropriateness of each method in modelling

the wind data is appraised by its accuracy in pre-

dicting the power density using relative deviation

and normalised root mean square error. From the

methods considered, the graphical method proved

to imitate the wind data most closely followed by

the standard deviation method. The Rayleigh distri-

bution (k=2 is also generated and compared with

the wind speed data. The Weibull parameters were

calculated by the graphical method for fourteen sta-

tions at which hourly wind speed data was avail-

able. These values were then used, with the assis-

tance of appropriate boundary layer models, in the

mapping of a wind power density map at 50m hub

height for Zimbabwe.

Keywords: Weibull distribution parameters, graphi-

cal method, power density

1. Introduction

The energy performance analysis and economic
appraisal of wind energy conversion systems
require knowledge on the probabilistic distribution
of wind speed, apart from just knowledge on the
mean wind speed. Knowing the probability density
distribution, one can assess the economic viability
of installing a wind energy conversion system at a
particular location (Celik et al, 2010; Antonio et al.,
2007) Various theoretical mathematical representa-
tions of probability distribution functions have been
published in the literature (Ramirez and Carta,
2005; Mathew et al., 2002; Seguro and Lambert,
2000; Garcia et al., 1998; Littella et al., 1979), such
as the Rayleigh, lognormal and two-parameter uni-
modal Weibull probability distribution functions.

Although the bimodal Weibull pdf, Jaramillo
and Borja (2004) might produce a better fit on the
wind speed data, especially for some locations in
Zimbabwe which experience frequent null wind
speeds, its use is regarded as an unnecessary addi-
tion to complexity where only the power density of
the wind is required. This is because the first mode
of the frequency distribution appears at null or very
low wind speeds which are not important in pro-
ducing useful power considering that the cut-in
speed of wind turbines is typically between 7 and
10 mph (about 3 to 4.4 m/s) (Glynn, 2000). This
study will therefore focus on the two-parameter uni-
modal Weibull probability density function for imi-
tating wind speed frequency distribution at the sites
in question. The parameters k (the shape factor)
and c (the scale factor) of the two-parameter
Weibull distribution will be determined by some of
the various methods found in the literature. 
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Mathew (2006) gives a concise description of
five methods that could be used to determine the
values of the two-parameter Weibull distribution.
The methods are; the graphical, the standard devi-
ation, the moment, the maximum likelihood and
the energy pattern factor (EPF) methods. Harrison,
Cradden and Chick (2007) note that the Rayleigh
distribution, which is a simplification of the Weibull
distribution in which k=2, and is defined solely by
mean wind speed, is often applied where specific
data for k is not available. Indeed it is relied upon in
many studies where time series data is not available
and the Weibull parameters cannot be determined.
In this paper, the Rayleigh distribution is also con-
sidered alongside the other aforementioned distri-
butions to assess its suitability in imitating the actu-
al wind speed data.

The criterion for assessing the suitability for each
method in modelling wind speed data is its ability to
estimate closely the power density at the site. The
theoretical maximum power density achievable by
any wind turbine – Betz Limit (van Kuik, 2007;
Gorban et al; 2004; Hughes and George, 2002) - is
used as a common yardstick for the comparison.

2. The Weibull distribution

The frequency distribution of wind speed at a given
site can be modelled by the two-parameter Weibull
probability density function (pdf). The Weibull pdf,
pW [s/m], can be written:
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3. Data available for study

The finest time-step resolution of wind speed meas-
urements available in Zimbabwe is the hour. Hourly
wind speed data is available at only fourteen sta-
tions over all of Zimbabwe. Such data was obtained
for two years (1991 – 1992), from the
Meteorological Services Department (MSD) of
Zimbabwe. The measurements are done by cup
anemometers placed at a height of 10 m above
ground. For each station, the data was subsequent-
ly grouped into speed–spectra frequency bins of 1
m/s range to prepare for later analysis. The grouped
data for four major stations is shown in Table I for
validation of the methods described in Section 4.

The models used for determining the diurnal
variation of energy output for the two generating
components of the hybrid system; PV array and
diesel generator, are outlined in this section.

4. Methods for determining Weibull

parameters from wind data

Mathew (2006) describes five different methods for
determining the values of the Weibull k and c from
measured wind data. These methods, namely; the
graphical; the standard deviation; the moment; the
maximum likelihood and the energy pattern factor
methods, are reviewed in the following sections and
are going to be used to determine k and c values
from the data in Table I. In addition, the commonly
used Weibull simplification- the Rayleigh distribu-
tion- is tested for its goodness-of-fit on the meas-
ured data.

4.1 Graphical method

The graphical method for determining k and c is
based on the fact that the Weibull cumulative distri-
bution function of (7) can be transformed into a log-

linear form, and the technique of linear regression
exploited. The cumulative pdf is manipulated by
taking natural logarithms twice on both sides to
make it a linear equation. The resulting equation is:

ln[–ln(1 – P (v ≤ vo))] = klnv – klnc (13)

Equation (13) is linear in ln[–ln(1 – P (v ≤ vo))], the
dependent variable (Y), and lnv, the independent
variable (X) in Y = a + bX, in which a = -klnc and
b = k are regression constants. 

Hourly meteorological records of wind can now
be grouped in speed –spectra frequency bins or
classes, and the values of ln[–ln(1 – P (v ≤ vo))]  and
lnvo calculated for each class. 

The symbol vo is the upper limit speed value of
the class, and P, for each class, is the number of
speed records with speed lower than vo, divided by
the total number of records in the sample (-the rel-
ative cumulative frequency). Log–linear regression
fits are shown on Figures 1(a) and 1(b), for Harare
and Gweru respectively.

The gradient of the regression line in Figures
1(a) and 1(b) equals the value of k, and the inter-
cept equals -klnc, from which c can be inferred. The
graphs show a very strong correlation of the vari-
ables with the coefficient of determination, R2,
about 0.99 in each case.

At P = 1, the natural logarithm of 1-P does not
exist. In this case, 1-P is replaced by a a very small
number, essentially zero, but not equal to zero, such
that the logarithm of 1-P is computable. 

4.2 The standard deviation method
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Figure 1(a): Linear regression for Harare data

Figure 1(b): Linear regression for Gweru data



The validity of the Rayleigh simplification in
modelling wind speed data is tested, alongside the
other previously discussed methods, and the results
are presented in the following section.

5. Results 

The probability density functions generated by
methods described in sections 4.1 to 4.6 are com-
pared with the measured probability density func-
tion in Figures 2(a) to 2(d) for four sample stations,
Harare, Gweru, Bulawayo and Masvingo, respec-
tively. The comparisons for cumulative probability
functions are shown in Figures. 3(a) and 3(b) for
Bulawayo and Masvingo, respectively. 

The calculated probability density functions are
uni-modal, but for some sites, as is depicted for
Gweru and Masvingo (a continuous curve used to
give better impression), the measured distributions
are bimodal. However, the first modes of these
bimodal distributions occur at low wind speed (in
the 0 to 1 m/s range). Using a uni-modal distribu-
tion to represent them is considered not to serious-
ly affect power calculations. 

The theoretical distributions in Figures 2(a)-2(d)
and Figures 3(a) and 3(b) (cumulative distributions
are shown only for Bulawayo and Masvingo)
appear to imitate the measured distribution with
varying capability in doing so. However, only a sub-
jective appraisal can be made on the relative fitness
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Figure 2(b): Probability density functions by different methods superimposed on measured

distribution for Gweru

Figure 2(a): Probability distribution functions by different methods superimposed on measured

distribution for Harare

Figure 2(c): Probability density functions by different methods superimposed on measured

distribution for Bulawayo
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Figure 2(d): Probability density functions by different methods superimposed on measured

distribution for Masvingo

Figure 3(a): Cumulative probability distributions for Bulawayo

Figure 3 (b): Cumulative probability distributions for Masvingo



Table 1: Grouped wind speed data for Harare, Gweru, Bulawayo and Masvingo

Speed vcentral ] Harare Gweru Bulawayo Masvingo

range [m/s

[m/s]

From To Frequency Cumulative Frequency Cumulative Frequency Cumulative Frequency Cumulative

frequency frequency frequency frequency

0 1 0.5 3584 3584 3155 3155 4071 4071 3561 3561

1 2 1.5 3855 7439 1046 4201 4896 8967 2497 6058

2 3 2.5 4584 12023 3807 8008 3639 12606 2976 9034

3 4 3.5 3044 15067 2782 10790 2456 15062 2482 11516

4 5 4.5 1419 16486 2231 13021 1353 16415 2371 13887

5 6 5.5 554 17040 1878 14899 647 17062 1632 15519

6 7 6.5 194 17234 1028 15927 329 17391 1243 16762

7 8 7.5 55 17289 524 16451 129 17520 501 17263

8 9 8.5 14 17303 234 16685 16 17536 189 17452

9 10 9.5 2 17305 84 16769 1 17537 70 17522

10 11 10.5 3 17308 38 16807 1 17538 10 17532

11 12 11.5 0 17308 19 16826 0 17538 7 17539

12 13 12.5 0 17308 0 16826 0 17538 3 17542

SUM 17308 SUM 16826 SUM 17538 SUM 17542

Frequency unit is hours per 2 years

Table 2: Grouped wind speed data for Harare, Gweru, Bulawayo and Masvingo

Station/method Measured Graphical Std. Dev. Moment Maximum likeli- EPF Rayleigh

method method method hood method method distrbution

Harare v [m/s] 2.37 2.39 2.39 2.39 2.39 2.40 2.39

% dev v 0 1 1 1 1 1 1

K - 1.71 1.58 1.53 1.69 1.62 2

C [m/s] - 2.68 2.66 2.65 2.67 2.67 2.69

ED [W/m2] 10.8 11.0 12.2 12.7 11.2 11.9 9.2

% dev ED 0 2 13 18 3 9 -15

Gweru v [m/s] 3.58 3.58 3.46 3.54 3.58 3.58 3.58

% dev v 0 0 -3 -1 0 0 0

K - 1.86 1.76 1.39 1.58 2.07 2.00

C [m/s] - 4.04 4.02 3.92 3.99 4.04 4.04

ED [W/m2] 33.6 33.5 35.0 41.4 38.4 29.6 31.1

% dev ED 0 0 4 23 14 -12 -7

Bulawayo v [m/s] 2.28 2.40 2.29 2.29 2.29 2.28 2.28

% dev v 0 5 0 0 0 0 0

K - 1.59 1.58 2.30 1.60 2.00 1.59

C [m/s] - 2.49 2.29 2.30 2.52 2.57 2.49

ED [W/m2] 11.5 11.2 11.5 8.9 11.5 10.4 8.0

% dev ED 0 -3 0 -23 0 -9 -30

Masvingo v [m/s] 3.2 3.2 3.3 3.2 3.2 3.3 3.2

% dev v 0 0 3 0 0 3 1

k - 1.90 1.54 1.77 1.46 1.73 2.00

c [m/s] - 3.79 3.53 3.56 3.50 3.56 3.58

ED [W/m2] 23.8 28.6 27.2 29.5 24.7 31.4 25.4

% dev ED 0 -4 4 -13 10 -11 -24

-

-

-

-

-

-

-

-



of each method to the measured data from these
pictorial presentations. A quantitative comparison is
required.

To quantitatively appraise of the various meth-
ods, Table 2 is constructed. It shows the measured
mean wind speed calculated according to (5a) in
comparison to the mean wind speed of the theoret-
ical distributions of methods in sections 4.1 to 4.6,
computed by (4). The table shows the percent devi-
ation of the mean speeds from the measured.
Importantly, the table also makes similar presenta-
tions for the Betz-limit power density. The corre-
sponding values of k and c are also shown on the
table.

With the aid of Table 2 it can be shown that, if
the power density is considered the figure of merit,
the graphical method (maximum power density
deviation of 4%) is the most reliable of all methods
considered, followed closely by the standard devia-
tion method (maximum deviation of 13%). All the
six methods predict the actual mean speed fairly
accurately (within 5%). This is expected since,
except for the graphical method all the other distri-
butions are formulated based on the mean wind
speed. 

The accuracy of the methods in predicting spec-
tral power density can also be compared by calcu-
lating the normalised root mean square error
(NRMSE) for each method. The power density for
each wind speed spectrum calculated by the

Weibull model is compared with that calculated

from measured data and a NRMSE is obtained for

each sample station and for all stations combined

(overall). The NRMSE values for each method are

listed in Table 3. The graphical method gives the

least NRMSE of all the methods for all stations.

The wind power density at 50 m hub height is

shown in Figure 4. To obtain the wind power den-

sity map of Figure 4, the values of k and c at the

fourteen stations having hourly wind data were cal-

culated using the graphical method. Equation (11)

was then used to compute the power density at the

stations, first at the measurement height of 10 m

hub height, then at 50 m by applying the three-sev-

enth-power law. The values of power density were

then mapped using the ordinary kriging interpola-

tion option of the software Surfer Version 12

(Scientific Software Group, 2013). 

The wind power density for Zimbabwe is seen to

be highest in the central region – the Midlands

province. The power density at 50 m hub height

varies between about 10 W/m2 to 120 W/m2. These

power density levels are rather low for economical

large-scale power production, lying in Class 1 of the

US NREL wind power density classification (Wind

Power Class, 2014). Some specially selected sites,

however, may be suitable for applications such as

water pumping or even power generation using

special wind turbines which have low cut-in speeds.
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Figure 4: Zimbabwe wind power density at 50 m hub height in W/m2 constructed using Sufer

(Lawless, 2003) geostatistical software



Table 3: Comparison of Normalised Root Mean

Square Error (NRMSE) between spectral power

density calculated by the Weibull model and

that calculated from measured data

Method Bulawayo Gweru Harare Masvingo Overall

Graphical 0.3 0.28 0.12 0.28 0.22

Standard 0.55 0.53 0.3 0.38 0.34
deviation

Moment 1.06 1.03 0.38 0.37 0.60

Maximum 0.56 0.36 0.14 0.44 0.43
likelihood

Energy  0.38 0.36 0.24 0.35 0.32
pattern
factor

Rayleigh 0.9 0.87 0.27 0.52 0.45

6. Summary and conclusion

The study uses five different methods for calculating
the parameters of the two-parameter Weibull distri-
bution from measured wind speed data at fourteen
locations in Zimbabwe. The Rayleigh distribution,
which is a commonly used proxy to wind speed dis-
tributions, is also generated and compared with the
measured data. The graphical method, for correlat-
ing the measured wind speed probability distribu-
tion with the theoretical Weibull distribution, esti-
mated power density to within 4% of the actual in
all the four illustrative cases considered. This
method was then used to determine the Weibull
parameters at the rest of the fourteen stations with
hourly wind speed data. This enabled the mapping
of wind power density over Zimbabwe. The wind
power density for Zimbabwe is generally low for
power generation purposes. Some considerable
potential exists though in the Midlands province for
applications such as water pumping that can do
with low wind speed. The approach used in this
study can be replicated in other countries in the
region in creating their respective wind power den-
sity maps.
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