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Abstract 
Both the planning and operating of a wind farm de-
mand an appropriate wind speed model of its loca-
tion. The model also helps predict the dynamic be-
haviour of wind turbines and wind power potential 
in the location. This study characterises the wind 
speed series and power in Durban (29.9560°S, 
30.9730°E), South Africa, using Markov chain and 
Weibull distribution. Comparison of statistical quan-
tities of measured and Markov model-generated 
wind speed series revealed that the model accurately 
represented the measured wind speed series. The 
Markov model and Weibull distribution were also 
compared through their corresponding probability 
density functions. The root mean square error of the 
Markov model against the measured wind speed se-
ries was nearly one-tenth that of the Weibull distri-
bution, indicating the effectiveness of the former. Fi-
nally, the analysis of wind power density showed 

that Durban and its environs need large wind tur-
bines with hub heights greater than 85 m for efficient 
utilisation of the available wind energy.  
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Highlights 
• Wind speed series in Durban can be character-

ised using the Markov chain model, and the cor-
responding power can be fairly predicted using 
the model. 

• Compared to the conventional Weibull distribu-
tion, the Markov chain model accurately repre-
sents the wind speed series in Durban. 

• Durban and its environs require wind turbines 
with heights higher than 85 m for efficient oper-
ation. 
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1. Introduction 
Depletion of fossil fuel reserves, global warming, se-
curity concerns, and rising commodity prices are 
pushing the world to go green. Much attention is cur-
rently given to the development of renewable en-
ergy, among which harnessing wind energy is the 
cheapest alternative[1–3]. Feasibility studies related 
to wind power require an appropriate wind speed 
model of a site [4, 5]. These models are also im-
portant in planning and operating wind turbines. 
Hence, the wind speeds of a specified site should be 
appropriately characterised to determine wind en-
ergy potential and attain comprehensive results in 
the investigations of the dynamics of the wind tur-
bines [4, 6, 7]. Moreover, a good characterisation of 
wind speed helps transmission system operators in 
scheduling their power dispatch [4]. 

Wind is a random stochastic process whose dy-
namic behaviour can be represented by a stochastic 
model [8]. Naturally, it depends on pressure gradi-
ent, waves, jet streams, and local weather conditions 
[9]. Its stochastic modelling is a complicated task be-
cause of its strong variability in time and land ter-
rains. Over a year, wind speed is periodic, showing 
seasonal variations; however, hourly average wind 
speed is a stochastic process with a Weibull proba-
bility density function; whereas within minutes, it fol-
lows a Gaussian distribution [10].  

Different methods have been employed for time 
series characterisation of wind processes. Tradition-
ally Weibull distribution is widely used to represent 
wind speed series at a given site [4, 11—13]. Nor-
mal, Gamma, Lognormal or combination of these 
distributions with Weibull distribution [4, 7, 14—
16], empirical wavelet [17] or Kernel density 
method [18] can also be used to model wind speed 
series. Shokrzadeh et al. [19] and Kazemi and 
Goudarzi [20] employed advanced parametric and 
nonparametric and least square approximation 
methods to forecast wind power. A typical distribu-
tion may not necessarily represent the cumulative 
wind behaviour of all locations in a region [7]. Thus, 
the wind speed for a particular location needs to be 
modelled. The above distributions cannot be used, 
however, when chronology is considered [4]. A 
rough observation on the raw wind speed data from 
Durban demonstrated that the current wind speed 
depended on the previous wind speed, indicating 
that chronology should be considered in modelling 
the wind speeds. Evolutionary algorithms such as 
genetic algorithm and local search technique are 
also used in wind speed modelling [21] despite their 
time consuming procedure [4]. 

The Markov chain model, which retains chronol-
ogy and consumes less time, could, therefore, be 
employed to synthesise wind speed time series for 
dynamic simulation and wind power forecasting[10, 
22–24]. The accuracy of a Markov model increases 

with its order [22]. The first-order model is often 
adopted for its simplicity and economic computing 
time [24]. A modified Markov model may show bet-
ter performances than the corresponding normal 
model in preserving the properties of wind speed se-
ries[25]. Particularly, the second order semi-Markov 
process is more suitable for processes characterised 
by states with variable durations [10]. 

Few efforts have been made to characterise wind 
speeds and power for electric generation in South 
Africa using computer algorithms and frequency dis-
tribution methods [26–28]; however, the Markov 
model has never been used for characterising wind 
speed series in Durban. As wind speed models 
strongly depend on location, an investigation into 
the wind speed series at the site is vital. This study, 
therefore, used the first order Markov chain model 
to characterise the wind speed series in Durban us-
ing fixed-step duration between states. The model 
was also compared with Weibull distribution. The 
comparison showed that the Markov model was 
more effective than Weibull distribution. Finally, 
Weibull and Gaussian probability density functions, 
along with the Markov model, were employed to 
produce synthetic wind speed series over minute 
and second intervals respectively. Generation of ar-
tificial wind speed series was crucial for the dynamic 
simulation of wind turbines. 

2. Data preparation and analysis 
2.1 Wind speed data 
The data used in this investigation was obtained 
from South African Weather Services. Hourly wind 
speed measurements were taken at Durban South 
Merebank (DSM) (29.9560°S, 30.9730°E) from Jan-
uary 2014 to December 2015. Anemometers were 
installed at the station at 8 m hub height to measure 
wind speed from the DSM weather station, notwith-
standing the height of the tower of a wind turbine 
that exceeded 8 m. 

2.2 Data analysis 
These wind speed data are converted to the corre-
sponding higher hub height data by the power law 
wind speed profile [29] defined by Equation 1. Wind 
speed directions were not considered in this investi-
gation as wind energy density mainly depends on 
the speed. 

     𝑣𝑣ℎ2 = 𝑣𝑣ℎ1 �
ℎ2
ℎ1
�
𝛼𝛼

 [m/s] (1) 

where 
𝑣𝑣ℎ2=wind speed at hub height 2; 
𝑣𝑣ℎ1= wind speed at hub height 1; 
ℎ2 = hub height 1; 
ℎ1 = hub height 2; 
𝛼𝛼 = Hellman Exponent. 
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Figure 1 shows a two year distribution of wind 
speed series at DSM at 70 m hub height. These 
hourly values are statistically analysed to generate 
monthly hourly wind speed values, subsequently 
used to sketch the wind speed contour maps for Dur-
ban. Figures 2 and 3 show the wind speed contour 
maps at 8 m and 70 m hub heights at the DSM 
weather station respectively. The hourly wind speed 
values shown in Table 1 were obtained at an altitude 
of 70 m and range from 0 to 23 m/s. Average 
monthly hourly wind speeds, however, ranged from 
1.5 to 12 m/s. The wind speed, which is very sto-
chastic, highly depended on temperature variations 
as shown in Figure 2, a contour map for hourly 
monthly wind speeds. Wind being created by differ-
ential heating of the earth’s surface by the sun, it in-
creased with solar radiation.. The daily maximum 
wind speed was observed from 13h00 to 16h00 
where the temperature was also maximum, 
whereas, the minimum speed occurred after mid-
night. Wind speed density was high during working 
hours, which is vital for wind turbine operators. Fur-
thermore, Figure 2 shows the dependence of wind 
speed on seasonal variations. From December to 
March, relatively hot months, the wind speeds were 
relatively high (2.5 – 5.5 m/s monthly average wind 
speed). On the other hand, from April to August, 
usually corresponding to the dry season, low wind 
speeds (1.5–3 m/s monthly average wind speed) 
were expected. September, October and November 
saw monthly average wind speeds ranging from 2–
4.5 m/s. Wind speed also increased with hub height, 
as shown in Figure 4.  

Figure 1: Observed wind speeds at Durban South 
Merebank weather station. 

3. Methods, results and discussion 
3.1 Markov chain model 
The Markov chain is a stochastic process that satis-
fies the Markov property and is characterised by 
memorylessness[30]. The chain is, indeed, a series 
of transitions between states (or values) of a process 
where the future state relies on the current state and 
not on how the process arrives at this particular state 
[10]. This model primarily takes into account the 
state, time index and statistical dependency of the 
random process [10, 30]. Moreover, the states may 
be finite or infinite. In this investigation, a finite num-
ber of states were considered. A more elaborated ex-
planation of the Markov chain approach is pre-
sented by Meyn and Tweedie [30]. 

Furthermore, the dimension of the state space 
considered has a significant effect on the accuracy 
of the Markov model [31], which increases with the  

 
 

Figure 2: Monthly hourly mean wind speed at Durban South Merebank weather station at 8 m hub height. 
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Figure 3: Monthly hourly mean wind speed at Durban South Merebank weather station at 70 m hub height. 

Figure 4: Annual mean wind speeds at different hub heights. 

dimension of the state space, and the statistical char-
acteristics of the wind speeds are satisfactorily pre-
served. 

This section demonstrates the relationship be-
tween the stochastic properties of wind speed pro-
cesses and Markov chain model. Initially, hourly 
wind speed measurements from DSM were classified 
into sixteen distinct states with 1 m/s intervals as 
shown in Table 1. A transition probability matrix 
(TPM) describing these states was, subsequently, de-
termined using the Markov chain approach. Based 
on this matrix, a process was executed to develop 
an algorithm for implementation in MATLAB to gen-
erate wind speeds from the principal elements of the 

model. The wind speed series generated from the 
proposed model were then compared with the ac-
tual measurements via statistical tools and error 
analysis. The probability density functions of the ob-
served, generated and the Weibull distribution, 
whose scale shape parameters were obtained from 
observed data in Section 2.1, were compared. 

 

3.1.1 Transition probability matrix and limiting 
probabilities 
A transitional probability matrix is the basis for any 
Markov chain model. In developing this model, first, 
the states of the model should be decided. Hence, 
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the wind speed states were classified in the interval 
of 1 m/s as shown in Table 1. 

Table 1: Wind speed states and correspond-
ing frequencies at 70 m hub height. 

State 
Wind speed boun-

daries (m/s) 
Observed  
frequency 

Expected 
frequency 

1 0─2 1848 1847.4880 

2 2─3 966 966.1512 

3 3─4 1139 1138.2390 

4 4─5 1249 1248.8670 

5 5─6 1044 1043.5910 

6 6─7 843 842.0020 

7 7─8 932 931.7336 

8 8─9 890 888.7116 

9 9─10 638 637.9548 

10 10─11 718 717.8528 

11 11─12 561 560.5152 

12 12─13 387 387.1980 

13 13─14 340 340.4884 

14 14─15 266 265.5072 

15 15─16 141 141.3580 

16 >16 328 328.1964 

Total 16 12290 12290 

 

The elements of the transitional probability ma-
trix in Equation 2 are calculated as follows: For N 
states at each time step, there may be N moves be-
tween two consecutive time steps. Thus, the transi-
tion probability from state i at time t to another state 
j at time t+1, denoted by pij, is calculated from 
measured wind speeds at DSM. 

The elements of the transition matrix are 
bounded within 0 ≤ 𝑝𝑝𝑖𝑖𝑖𝑖 ≤ 1 such that:∀𝑖𝑖, 𝑗𝑗 ∈
{1, … , 𝑁𝑁}. The element 𝑝𝑝𝑖𝑖𝑖𝑖 denotes the probability of 
switching from state i to state j or remaining in the 
same state. All elements of the matrix are greater 
than or equal to zero.  

     𝑃𝑃 = �

𝑝𝑝11 𝑝𝑝12 … 𝑝𝑝1𝑁𝑁
𝑝𝑝21 𝑝𝑝22 … 𝑝𝑝2𝑁𝑁

. . . .
𝑝𝑝𝑁𝑁1 𝑝𝑝𝑁𝑁2 … 𝑝𝑝𝑁𝑁𝑁𝑁

� (2) 

As sixteen states were considered in the state 
space, the size of the transition matrix would be-
come 16x16, i.e. N is 16. The state TPM should fulfil 
the constraints given in Equations 3 and 4. 

     0 < 𝑝𝑝𝑖𝑖𝑖𝑖 < 1 (3) 

     ∑ 𝑝𝑝𝑖𝑖𝑖𝑖 = 1𝑁𝑁
𝑖𝑖=1  (4) 

The elements of P in Equation 2 are given by Equa-
tion 5. 

     𝑝𝑝𝑖𝑖𝑖𝑖 =
𝑘𝑘𝑖𝑖𝑖𝑖

∑ 𝑘𝑘𝑖𝑖𝑖𝑖𝑗𝑗
 (5) 

where 𝑘𝑘𝑖𝑖𝑖𝑖 is the number of jumps from state i to state 
j. The elements of matrix P represent the frequency 
of the observed wind speed states, which come to 
the jth state from the ith state at the previous time step. 
The data shown in Figure 1 were modelled using the 
Markov model and Table 2 shows the elements of 
the TPM. 

The main component of the Markov model is the 
TPM shown in Table 2. Observing this matrix, it 
could be seen that the highest probabilities were 
around the main diagonal of the matrix. This indi-
cated that if the current state were given, there 
would be a high probability that the next wind speed 
would remain in the same state. For instance, if the 
present wind speed were in the range 5 to 6 
m/s,there would be a probability of 0.27 that the 
subsequent wind speed would stay the same. 

Another characteristic of the transition probabil-
ity matrix was that the transition probability of a 
state to a higher state was less than the probability 
of transition to a corresponding lower state. For ex-
ample, if the current state were state 5 (5–6 m/s), the 
probability of transition from state 5 to state 6 (6–7 
m/s) would be 0.17 whereas the transition probabil-
ity from state 5 to state 4 (4–5 m/s) would be 0.24. 
In general, the transition probability matrix showed 
that the probability of transition from a state to a far 
higher or lower state was less probable. For instance, 
if the current state were 2 (2–3 m/s), the probability 
of switching to state 15 (15–16 m/s) would be 0. 
Similarly, the probability of switching from state 14 
(14–15 m/s) to state 3 (3–4 m/s) was 0. 

Another important factor of the Markov chain 
model is the limiting probability matrix (or steady 
state vector), π, which shows the total percentage 
occurrence of a state in a chain. This vector is equiv-
alent to the mth power of P i.e, 𝑃𝑃𝑚𝑚 → 𝜋𝜋. The steady-
state behavior of a Markov chain is given by Equa-
tion 6 [32].  

[𝜋𝜋1 …𝜋𝜋𝑁𝑁]𝑃𝑃 =  [𝜋𝜋1 …𝜋𝜋𝑁𝑁] (6) 

where πi is the steady state probability for the ith 
state. 

The sum of the elements within the limiting prob-
ability vector at steady state is given by Equation 7. 

     
∑ =

i
i 1π

 (7) 
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Table 3 shows the limiting vector, which is expressed 
as the fraction of the time the system stays in a state, 
given by the 82nd (m = 82) power of the transition 
probability matrix, P. Moreover, the expected fre-
quency column in Table 1 was obtained using this 
limiting vector. For example, if there were T hours 
in a given time interval, 0.0927*T of the intervals 
would have wind speeds in the range 3 to 4 m/s, and 
0.0456*T would have wind speeds between 11 and 
12 m/s. The limiting vector of the Markov chain 
model was close to the real wind speeds, as depicted 
in Table 1. 

Table 3: The limiting vector. 

States 1 2 3 4 

𝜋𝜋𝑖𝑖 0.1504 0.0786 0.0927 0.1016 

States 5 6 7 8 

𝜋𝜋𝑖𝑖 0.0849 0.0686 0.0758 0.0723 

States 9 10 11 12 

𝜋𝜋𝑖𝑖 0.0519 0.0584 0.0456 0.0315 

States 13 14 15 16 

𝜋𝜋𝑖𝑖 0.0276 0.0216 0.0115 0.0267 

3.1.2 Generation of wind speeds using the Markov 
model 
At this point in the study, the TPM representing wind 
speeds, limiting state probabilities and expected fre-
quencies were determined from wind speed meas-
urements at DSM. Reasonably, the application of 
the Markov chain concept to wind speed series could 
assist in the synthesis of the random behaviour of 
wind speeds. Consequently, in this section, wind 
speeds were generated in MATLAB. Finally, the ac-
curacy of the proposed Markov chain model was 
compared with measurements from the DSM 
weather station. 

The generation of synthetic wind speeds was 
based on the elements of the probability transition 
matrix, which lie between 0 and 1, in Table 2. In 
fact, the cumulative TPM (CTPM) whose elements 
were obtained from the TPM as shown in Equation 
8 is the basis for wind speed series generation using 
the Markov chain model.  

     𝑃𝑃𝑖𝑖𝑖𝑖 = ∑ 𝑝𝑝𝑖𝑖𝑖𝑖𝑘𝑘
𝑗𝑗=1  (8) 

where Pik is the transition probability in row i at state 
k. Table 4 shows the corresponding CTPM obtained 
from Table 1. 

In the synthesis of the wind speed time series, 
MATLAB random number generators were used to 
generate numbers based on the arranged states in 
Table 1. Subsequently, the randomly generated 
numbers were distributed among the different wind 

speed states according to the CTPM. Generally, the 
following algorithm was adopted in the synthesis of 
the wind speed data: 
1. An initial state was taken randomly. 
2. A set of uniformly distributed random numbers 

between 0 and 1 was generated. 
3. A new wind speed state was determined when 

the upper boundary of the interval in which the 
random value generated in step 2 was greater 
than the element of the CTPM of the previous 
state and less than or equal to the element of the 
CTPM of the next state. 

4. The intermediate wind speed values were ob-
tained from a random number generator based 
on Weibull and Gaussian distributions for mi-
nute and second wise time intervals.  

 
This algorithm can, therefore, be used to gener-

ate any desired number of wind speeds. Figure 5 
shows the flowchart of the methodology adopted in 
generating the synthetic wind speed series. In Figure 
5, N was used to represent the total simulation time. 
A sample generated wind speed time series which 
were generated using this algorithm are shown in 
Figure 6. 

Figure 6: Synthetic wind speed data. 
 

3.1.3 Validation of the Markov model 
To validate the Markov model, the statistical charac-
teristics of the synthetic wind speed series were com-
pared with those of the measured ones as shown in 
Table 5. The table gives the statistical comparison 
between the measured and synthetic wind speeds, 
shown in Figure 6, generated by the Markov model. 
The medians were close to each other (5.98 m/s vs. 
5.84 m/s respectively). Similarly, the difference be-
tween the means (6.46 m/s vs. 6.42 m/s respectively) 
was insignificant. Moreover, there was no pro-
nounced difference between the standard deviations 
(4.48 m/s vs. 4.41 m/s respectively). Hence, statisti-
cally, the three statistical tools of the synthetic wind 
speeds were very close to that of the measured ones, 
showing the suitability of the Markov model for 
modelling wind speed series in Durban. 
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 Figure 5: Flowchart of the methodology adopted. 
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Table 5: Comparison of measured and 
generated wind speeds. 

Parameter Measured 
wind speeds 

Synthetic 
wind speeds 

Error 
(%) 

Median 5.9800 5.8357 2.40 

Mean 6.4600 6.4200 0.62 

Standard 
deviation 

4.4800 4.4100 1.56 

 
Another metric used to validate the Markov 

chain model was the probability density function 
(PDF). The PDF of any stochastic model provides 
adequate information rooted in the data by as-
sessing the frequency distribution and general statis-
tical parameters such as mean and standard devia-
tion. Accordingly, the PDF of the wind speeds meas-
ured at DSM for a period of two years (at 1 hour 
time interval) was compared with that of the syn-
thetic wind speed series, generated by the devel-
oped Markov model for model validation.  

Figure 7: The probability density functions of 
measured, generated wind speeds and Weibull 

distribution. 

The Root-Mean-Square Error (RMSE) given by 
Equation 9 can also be used to evaluate the perfor-
mance of the Markov model. This statistical tool 
measures the average distance between the ob-
served and generated data in Figure 7. 

     𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅 = �1
𝑇𝑇
∑ (𝐸𝐸𝑖𝑖 − 𝐹𝐹𝑖𝑖)2𝑁𝑁
𝑖𝑖=1  (9) 

where Ei is the dataset from measurement and Fi is 
the proposed model dataset for the number of sam-
ple size, T.  

The RMSE value of the PDF distributions for the 
measured and Markov model generated wind 
speeds was 0.0021, and that of the PDF distribu-
tions for the measured and the Weibull was 0.016. 
The RMSE of the Markov model was within the ac-
ceptable range (≤ 0.05) and by far better than the 
Weibull distribution, thus giving an excellent repre-
sentation of the measured wind speed series at the 
DSM weather station. 

The traditional way of representing wind speed 
series is using the Weibull distribution, discussed in 
section 3.2. The PDFs of the measured, the Markov 
wind speed series and the Weibull distribution are 
shown in Figure 7. The Markov model had a better 
goodness-of-fit than the Weibull distribution as it 
took chronology into consideration. This validated 
the accuracy of the model, which gave a fair repre-
sentation of the wind speed measurements. 

 

3.2 Weibull distribution 
The PDF of the Weibull distribution is given by 
Equation 10 [33]: 

     𝑓𝑓(𝑥𝑥) = 𝑏𝑏
𝑎𝑎𝑏𝑏
𝑥𝑥𝑏𝑏−1𝑒𝑒−( 1

𝑎𝑎𝑏𝑏
𝑥𝑥𝑏𝑏) 𝑥𝑥 ≥ 0, 𝑎𝑎, 𝑏𝑏 > 0 (10) 

where 𝑥𝑥, a and b represent the wind speed, the scale 
and shape parameters of the Weibull distribution re-
spectively. The a and b were calculated using the 
maximum likelihood estimation method [34] from 
the observed wind speed data and were found to be 
6.75 and 1.11 respectively. Figure 7 shows the plot 
for the Weibull distribution. 
 

3.3 Intermediate wind speeds 
Although the Markov model generated hourly mean 
wind speed series, it was not capable of generating 
wind speed series between successive hours and 
minutes because the wind speed series obtained 
from DSM were hourly mean wind speeds. This is 
one limitation of this study. For this reason, Weibull 
distribution and Gaussian distribution [33], given by 
Equation 11, were employed to predict wind speeds 
between successive hours and minutes using param-
eters obtained from the Markov model. 

     𝑓𝑓(𝑥𝑥) = 1
𝜎𝜎√2𝜋𝜋

𝑒𝑒−((𝑥𝑥−𝜇𝜇)2

𝜎𝜎2
) (11) 

where 𝜇𝜇 and 𝜎𝜎 represent the mean and standard de-
viation wind speeds respectively. 

Thus, the codes for the Weibull and Gaussian 
distributions were incorporated in the main 
MATLAB code where second and minute wise wind 
speed measurements were not available. The mean 
and the standard deviation of the Gaussian distribu-
tion were 6.24 and 4.36 respectively. 

Figure 8 shows the intermediate wind speeds 
generated using the Weibull distribution. Here the 
minimum and maximum wind speeds were 0.1795 
and 18.5 m/s. In Figure 9, the Gaussian wind speeds 
distribution is shown with minimum and maximum 
wind speeds at 0.0754 and 22.9 m/s. These wind 
speeds were close to the ones observed in the meas-
urement. 
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Figure 8: Wind speeds generated using a Weibull 
distribution based on Markov data. 

Figure 9: Wind speeds generated using Gaussian 
distribution. 

4. Wind power density distribution 
The wind power density distribution indicates the 
wind power available at different wind speeds and is 
given by Equation 12 [7]: 

     𝑊𝑊𝑊𝑊𝑊𝑊 = 1
2
𝜌𝜌𝑥𝑥3𝛿𝛿(𝑥𝑥)[Wm-3s] (12) 

where WPD is wind power density, 𝛿𝛿(𝑥𝑥) is the fre-
quency of wind speeds and 𝜌𝜌 is air density which is 
1.225 kgm-3 for standard conditions. Cumulative 
density probability of wind speeds and wind power 
in Durban is shown in Figure 10. 

Large wind turbines require a cut-in wind speed 
of 3.5 m/s [35]. From Figure 10, it can be observed 
that there is a 50% probability of getting wind 
speeds greater than this threshold at 70 m hub 
height. In fact, increasing the hub height increased 
the chance of getting wind speeds greater than the 
cut-in speed as shown in Figure 4, but this action 
also increased the initial capital cost of the wind tur-
bine. For very good performance of a wind turbine, 
the wind speed at this height should be about 10 m/s 
[36]. As shown in Figure 3, the monthly mean wind 
speeds in December, January, February and March 
were suitable for wind farms. On the other hand, 
Figure 11 shows the power density distribution over 
a year for 24 hours. For effective operation of a large 
wind turbine, potential sites are considered to have 
wind power densities ranging 300 to 550 W/m2 at 
70 m hub height [37]. 

(a) 

(b) 

Figure 10: Cumulative density probability for (a) 
wind speeds (b) wind power density in Durban. 

Figure 11: Wind power density over a year at 70 m 
hub height. 

According to this requirement, all months except 
May and June were in the domain of suitable 
months for wind farms. This domain could be fur-
ther extended by taking higher hub heights, as 
shown in Figure 12. The optimum hub height in 
Durban is expected to be around 85 m as shown in 
Figure 13. Therefore, compared to other windy ar-
eas, wind power installation in Durban might be 
more expensive. 
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Figure 12: Wind power density at 100 m hub 
height. 

Figure 13: Mean wind power density at different 
hub heights 

5. Conclusions 
This paper presented the characterisation of wind 
speed series and power in Durban using Markov 
chain and Weibull distribution. In developing the 
Markov model, the measured wind speed series 
were categorized into sixteen distinct states, and a 
TPM was formed. This TPM along with its limiting 
probability vector was used to write a MATLAB code 
that generates synthetic wind speed series. The me-
dian, mean, and standard deviation of the synthetic 
series are close to those of the measured ones, indi-
cating the accuracy of the model. On the other hand, 
the shape and scale factors of a Weibull distribution 
were generated using the measured wind speeds 
and maximum likelihood estimation method. Com-
paring the PDFs of the Weibull fit and the Markov 
model using RMSE methods showed that the latter 
accurately characterised the wind speed series. In-
termediate wind speeds between hours and minutes 
were also generated using Weibull and Gaussian 
distributions employing the results of the Markov 
model. The Markov model can, indeed, generate 
synthetic wind speeds, which can be used in analysis 
and simulations of the dynamic behaviour of wind 
turbines. It can also predict wind speeds for different 
time horizons. Finally, the analysis of wind power 
density revealed that large wind turbines having hub 

heights greater than 85 m could be effective in Dur-
ban and its environs. However, compared to windy 
areas, wind turbines in this area will have high hub 
heights. In future, larger geographical areas of South 
Africa, including wider datasets, will be addressed. 
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