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Abstract 
Wind power calculations are usually based on aver-
age wind data taken over one-hour intervals. The ef-
fect of the wind data resolution on the statistical tech-
niques used to calculate the probable power output 
(PPO) is commonly overlooked. This effect is ana-
lysed in this paper by iteratively calculating and com-
paring the PPO of a wind turbine using data, aver-
aged over different periods, obtained from Wind As-
sociation of South Africa. The power is calculated 
using both Weibull representation and direct poly-
nomial substitution techniques in order to compare 
and verify the results. The results indicate a fairly lin-
ear relationship between the resolution used and the 
PPO error incurred. These results raise an interest to 
examine the effects of a fine resolution on the data 
in terms of data dependence, which may violate the 
criteria for the majority of statistical tests and proce-
dures. 
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1. Introduction 
An ever-increasing demand for energy exists today, 
especially utilising clean renewable energy sources. 
Although such sources are available, an accurate 
analysis of their feasibility is required before decid-
ing to harness these sources at specific locations. 
The focus of this article pertains to wind energy as a 
renewable energy source. When considering a loca-
tion for harnessing of wind energy, the PPO of a 
wind turbine subjected to the wind present at that 
location must be determined from historical wind 
data recorded there. It is commonly assumed that 
wind data with an hourly resolution will be adequate 
for these calculations, without giving further atten-
tion to the compounding effect that the data resolu-
tion has on additional calculations. This article pre-
sents an investigation into the power calculation’s 
accuracy based on the wind data resolution. The in-
vestigation entails the PPO calculation for a given 
site and wind turbine for various resolutions of the 
data. The results are then analysed to determine the 
impact of the wind data resolution on the results. 
 

Table 1: The WASA site designation. 

Designation Site location 
WM01 Alexander Bay 

WM02 Calvinia 

WM03 Vredendal 

WM04 Vredenburg 

WM05 Napier 

WM06 Sutherland 

WM07 Beaufort West 

WM08 Humansdorp 

WM09 Noupoort 
WM10 Butterworth 

 

Wind data generally provides the speed and di-
rection in which the wind is blowing for a given pe-
riod of time. Wind data is influenced by the geo-
graphical environment, be it natural or man-made, 
as well as the height at which it is measured. The 
variable nature of wind tends to makes it a cumber-
some resource to measure, represent and analyse. 
Wind data sets analysis for various locations and 
heights in this investigation were used in order to 
perform an unbiased analysis of the data resolu-
tion’s effect. The wind data sets used were obtained 
from the Wind Association of South Africa (WASA), 
an initiative between the South-African government 
and the Department of Energy. The Association is 
financially supported by the Royal Danish Embassy 
as well as the United Nations Development Program 
– Global environment facility (UNDP-GEF) through 

the South African Wind Energy Program (Wind 
Atlas for South Africa, 2014). The WASA project 
gathers data from 10 sites around South Africa, sit-
uated on both the coast and inland, as listed in Table 
1. 

Each site records wind speed data at heights of 
10m, 20m, 40m, 60m and 62m by saving the aver-
age for each 10-minute interval in comma-separated 
value (.csv) files. 

In this raw form, the wind speed data is merely 
an estimator of what the average wind speed was 
during the measuring period. This in itself is not 
enough to quantise the availability of wind, which is 
further complicated by the variable nature thereof. 
In order to overcome this quantising problem, statis-
tical techniques can be employed for data distribu-
tion, and in doing so, make the data more intelligible 
and easier to work with. One of the simplest ways to 
obtain a meaningful representation of the data is by 
means of a histogram. When drawing a histogram 
of the wind speed data, using an adequate bin width 
Δ𝑥𝑥 one is left with a distribution showing how many 
observations fall within each bin, essentially provid-
ing an estimation of the probability distribution of 
the data as shown in Figure 1. An adequate bin 
width is dependent on the number of bins k required 
to represent the distribution of the data. This is usu-
ally determined by experimentation, but Sturges’ 
formula (Lane & University 2006) can also be em-
ployed according to Equation 1. 

     𝑘𝑘 =  ⌈1 + log2 𝑛𝑛⌉ (1) 

where 𝑛𝑛 is the number of observations. This will pro-
vide a reference value, but may need some adjusting 
since Sturges’ formula assumes an approximately 
normal distribution (Vose Software 2007). 

When employing Sturges’ rule on the wind data 
from the test site WM01 in Alexander Bay for a 
month with 31 days, it amounts to an 𝑛𝑛 =  (6 ×
24 ×  31)  =  4464, based upon a wind data inter-
vals of 10 minutes, suggesting to use 𝑘𝑘 = 13.1241 ≈
14 bins for the histogram as illustrated in Figure 2. 
This implies that the wind data is grouped in 14 bins, 
ranging from 0 𝑚𝑚

𝑠𝑠
 to a value encapsulating the max-

imum wind speed found in the wind data set, in this 
case 0 to 28 𝑚𝑚

𝑠𝑠
 with wind speeds grouped in 2 𝑚𝑚

𝑠𝑠
 bins. 

Figure 3 illustrates a histogram of the same data with 
𝑘𝑘 =  600. 
 

The wind data from test site WM01 can also be 
approximated by means of the Weibull probability 
density function (PDF). The Weibull distribution, 
generated by the Weibull PDF, performs a task sim-
ilar to a histogram, but surpasses it by smoothing the 
data and allowing the data to be easily represented 
by means of a simple equation. The Weibull distri-



 73 
 

 
Figure 1: Histogram illustration with a bin width 𝜟𝜟𝜟𝜟 of 𝟐𝟐𝒎𝒎

𝒔𝒔
 for 12 bins. 

 
Figure 2: Normalised histogram representation of the raw wind data (k = 14). 

 
Figure 3: Normalised histogram representation of the raw wind data (k = 600). 
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bution is particularly well suited to failure rates 
(Hayter, 2012) as well as to provide a close approx-
imation to the probability laws of many natural phe-
nomena (Lun & Lam, 2000).  

The Weibull distribution provides a statistical dis-
tribution depicting the probability of encountering 
each possible outcome of a random experiment, in 
this case the probability of encountering a certain 
wind speed based on long-term meteorological 
data. The Weibull PDF does not provide only the 
average wind speed, but also the probability of en-
countering each wind speed. This wind speed prob-
ability will later be used to determine the probable 
power output of wind turbines. The Weibull PDF is 
expressed as in Equation 2. 

     𝑓𝑓(𝑣𝑣) =  𝑘𝑘
𝑐𝑐
�𝑣𝑣
𝑐𝑐
�
𝑘𝑘−1

𝑒𝑒−�
𝑣𝑣
𝑐𝑐�
𝑘𝑘

 (2) 

where 𝑘𝑘 is a dimensionless shape parameter and 𝑐𝑐 
the scale parameter with the same unit as the wind 
speed 𝑣𝑣 (Lun & Lam 2000). Once the Weibull curve 
has been generated for a given data set, it will pro-
vide a mathematical representation of the data dis-
tribution, hence speeding up calculations and free-
ing up memory by representing the actual data set, 
no matter how large it was initially. Histograms are 
generally graphed using bars to represent each bin, 
but in Figure 4 the values have been graphed using 
a normal line plot in order to compare it with the 
Weibull distribution of the wind data. It is clear from 
Figure 4 that the Weibull probability function pro-
vides a good representation of the raw wind data 
(Carrillo et al. 2014). 

The Weibull PDF will be used to represent the 
wind speed probability when performing PPO cal-
culations. The accuracy of a Weibull distribution de-
pends on the parameters used in the Weibull PDF. 
There are various methods that can be used to de-
termine the values of the shape and scale parame-
ters, each with their respective pros and cons (Al-
Fawzan, 2000). 

The maximum likelihood estimation (MLE) 
method is commonly used in literature to determine 
the shape and scale parameters for the Weibull func-
tion and consists of two equations. 

The shape parameter 𝑘𝑘 of the wind data can be 
calculated by iteratively implementing Equation 3 
(Seguro & Lambert, 2000):  

     𝑘𝑘 =  �∑ 𝑣𝑣𝑖𝑖
𝑘𝑘 ln(𝑣𝑣𝑖𝑖)

𝑛𝑛
𝑖𝑖=1
∑ 𝑣𝑣𝑖𝑖

𝑘𝑘𝑛𝑛
𝑖𝑖=1

− ∑ ln(𝑣𝑣𝑖𝑖)
𝑛𝑛
𝑖𝑖=1

𝑛𝑛
�
−1

 (3) 

with an initial estimate of 𝑘𝑘 = 2. Each wind speed 𝑣𝑣 
from the data set with 𝑛𝑛 observations is indexed by 
𝑖𝑖. A shape parameter of 𝑘𝑘 = 2 is used as an initial 
guess since it represents a special case of the Weibull 
distribution, namely the Rayleigh distribution, which 
provides a fairly typical curve for many locations 
(Burton et al. 2011). It is important to note that this 
method only functions with non-zero data values. 
Since the aim is to model the available wind speeds, 
the zero values were omitted for these tests. 

Subsequently the scale parameter 𝑐𝑐 can be cal-
culated by Equation 4. 

      𝑐𝑐 =  �1
𝑛𝑛
∑ 𝑣𝑣𝑖𝑖𝑘𝑘𝑛𝑛
𝑖𝑖=1 �

1
𝑘𝑘 (4) 

  

 
Figure 4: Weibull probability curve overlaid on the data’s normalised histogram. 
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The MLE method is asymptotically consistent, 
implying that the parameter estimates converges to 
the right values as the sample size increases. The 
method may, however, not be very accurate with 
small sample sizes (Hatahet, 2006). As a rule of 
thumb, a small sample size is defined as less than 30 
observations per parameter (University of California 
Regents, 2003). 

The MLE is a fairly computational intensive task, 
especially as the size of the data sets increases. Al-
ternative methods for parameter estimation were 
also considered. LabVIEW provides an alternative 
method to estimate the shape and scale parameters 
of the Weibull curve representing the wind data 
called a curve fit method (CFM). This alternative 
method requires a histogram to be created with ad-
equate bin width as described in section 3.1. After-
wards the histogram’s data is supplied to the non-
linear curve fit virtual instrument (VI) along with 
common shape and scale parameter values, in this 
case a value of 2 for both parameters. The non-lin-
ear curve fit VI uses the Levenberg-Marquardt algo-
rithm to determine the set of Weibull PDF parame-
ters that provide the best fit for the set of input data 
points (National Instruments 2008). 

The parameter estimation time becomes quite 
lengthy due to the magnitude of the data sets used 
in the analysis. The average number of data entries 
used for these calculations, based on a resolution of 
𝜆𝜆 = 1 = 10 𝑚𝑚𝑖𝑖𝑛𝑛 adds up to 4 464 data entries for a 
31 day month, averaging 52 560 data entries per 
year, per site. 

Substantially fewer data entries are left that need 
to be analysed when representing the data set in the 
form of a histogram. This allows the CFM to estimate 
the Weibull curve’s parameters faster than the MLE 
when supplied with large data sets with only a slight 
compromise in accuracy due to the smoothing char-
acteristics of the Weibull curve used to approximate 
the data’s histogram. The computational times for 
the MLE and CFM are compared in Table 2, based 
on a case study using the data from WASA’s WM01 
site based in Alexander Bay. The CFM produced the 
parameters much faster than the MLE method – in 
this case approximately 280 times faster. 

Table 2: Parameter estimation method comparison. 

  Maximum 
likelihood 
estimation 

Curve fit  
method 

Differ-
ence 

Execution time 

Large 
data set 

159.453s 0.570s 158.883s 

Accuracy 

Shape 1.889 1.939 2.67% 

Scale 6.599 6.227 5.64% 

The MLE method is considered to be the more 
accurate method to determine the parameters of the 
Weibull distribution. The parameters of the CFM in 
this analysis, however, differ at most by 5.64% from 
the parameters of the MLE method. Taking the exe-
cution speed into account, it was decided to use the 
CFM to calculate the parameters of the Weibull dis-
tribution in this investigation. 

With the wind speed data represented in an in-
telligible manner, the focus can shift to the harness-
ing of the wind. Wind turbines are devices that con-
vert the kinetic energy of the wind into mechanical 
energy, which in turns generate electricity with the 
help of an electric generator. The power created by 
the electric generator is dependent on the wind 
speed as well as the wind turbine’s technical specifi-
cations. 

The power curve of a wind turbine displays the 
power output of the specific turbine configuration 
for each corresponding wind speed. A wind turbine 
has four phases of power generation as indicated on 
the power curve of the Vestas V52-850kW turbine 
in Figure 5.  

 
• 0 → 𝑣𝑣𝑐𝑐𝑖𝑖 no generation; 
• 𝑣𝑣𝑐𝑐𝑖𝑖 → 𝑣𝑣𝑟𝑟 maximum rotor efficiency; 
• 𝑣𝑣𝑟𝑟  → 𝑣𝑣𝑐𝑐𝑐𝑐 nominal power generation with re- 

  duced rotor efficiency; 
• 𝑣𝑣𝑐𝑐𝑐𝑐 → ∞ no generation. 

 
The cut-in speed of the turbine, 𝑣𝑣𝑐𝑐𝑖𝑖, is the mini-

mum speed at which the turbine will start generating 
power. The range between the cut-in speed and the 
rated wind speed 𝑣𝑣𝑟𝑟 is generally proportionate to the 
cube of the wind speed (𝑣𝑣3). The optimal power 
producing operational phase of the wind turbine is 
in the range between the rated wind speed 𝑣𝑣𝑟𝑟 and 
the cut-out speed 𝑣𝑣𝑐𝑐𝑐𝑐 where the wind turbine will 
produce its rated power output. It is important to 
note that when the wind speed is greater than the 
cut-out speed the turbine ceases to produce power 
as a safety precaution in order to prevent over-pow-
ering of the infrastructure. 

An accurate mathematical representation of the 
turbine’s power curve can be obtained by fitting a 
polynomial curve to the manufacturer’s power 
curve. The MATLAB simulations and polynomial fit-
ting in Microsoft Excel showed that a sixth-order pol-
ynomial, as shown in Figure 6, provides the best ap-
proximation of the manufacturer’s power curve as 
illustrated in Figure 5. 

The equation of a sixth-order polynomial is given 
by Equation 5. 

      𝑃𝑃𝑖𝑖(𝑣𝑣) =  (𝑏𝑏6𝑣𝑣6 + 𝑏𝑏5𝑣𝑣5 + 𝑏𝑏4𝑣𝑣4 + 𝑏𝑏3𝑣𝑣3 + 𝑏𝑏2𝑣𝑣2 +
      𝑏𝑏1𝑣𝑣 + 𝑏𝑏0) (5) 

where 𝑏𝑏𝑖𝑖 ∈ 𝑅𝑅 for any 𝑖𝑖 ∈ 𝑍𝑍+. 
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Figure 5: Power curve of a Vestas V52-850kW wind turbine at different sound levels (Vestas 2012).  

 
Figure 6: Wind turbine power curve comparison. 

 
The calculated Weibull distribution of the wind 

speeds can be applied to determine the PPO of wind 
turbines. This can be approached by calculating the 
theoretical amount of power available in the wind 
and then how much of that power can be extracted 
by a wind turbine based on its dimensions. 

The theoretical power 𝑃𝑃 available in the wind 
can be expressed as in Equation 6 (Ramírez & Carta, 
2005).  

      𝑃𝑃 =  1
2

 𝜌𝜌𝜌𝜌𝑣𝑣3 (6) 

where 𝜌𝜌 is the density of air �𝑘𝑘𝑘𝑘
𝑚𝑚3� that flows perpen-

dicular to an area 𝜌𝜌 (𝑚𝑚2) with a velocity 𝑣𝑣 �𝑚𝑚
𝑠𝑠
�.  

It is important to note that the density of air var-
ies with altitude and temperature. When using 
Equation 6 to calculate the theoretical power avail-
able in the wind, the Lanchester-Betz limit has to be 
taken into account. The Lanchester-Betz limit states 
that the maximum power that can be extracted from 
the wind is 59.3% of the power available in the wind 
under ideal conditions (Cuerva & Sanz-Andrés, 
2005). 
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It is, however, possible to calculate the probable 
power output 𝑃𝑃𝑝𝑝𝑟𝑟𝑐𝑐𝑝𝑝(𝑣𝑣) of a wind turbine without cal-
culating the Lanchester-Betz limit because the wind 
turbine’s power curve relates wind speed to power 
output and can be calculated in one of two ways. 
The first method, known as the polynomial substitu-
tion, is computationally intensive. Each wind speed 
data entry is supplied to the wind turbine power 
curve polynomial and the final result is averaged as 
in Equation 7. 

      𝑃𝑃𝑝𝑝𝑟𝑟𝑐𝑐𝑝𝑝 =  1
𝑛𝑛

 ∑ 𝑃𝑃𝑝𝑝𝑐𝑐𝑝𝑝𝑝𝑝(𝑖𝑖)𝑛𝑛
𝑖𝑖=1  (7) 

where 𝑛𝑛 is the number of entries in the wind speed 
data set and 𝑃𝑃𝑝𝑝𝑐𝑐𝑝𝑝𝑝𝑝(𝑖𝑖) is the turbine power curve pol-
ynomial, in this case given by Equation 9, which is 
addressed later. An alternative method is to make 
use of the Weibull PDF, which provides the proba-
bility of each wind speed being present as shown in 
Figure 4, while the power curve indicates the power 
that will be available at each wind speed shown in 
Figure 6. These two graphs can be multiplied to ob-
tain a wind turbine power probability graph 
(Bradbury, 2008), as illustrated in Figure 7. 

Thus, following the calculation of the Weibull 
curves 𝑓𝑓𝑊𝑊(𝑣𝑣) and the turbine power curve 𝑃𝑃(𝑣𝑣), the 
probable power output can be calculated in terms of 
Equation 8. 

𝑃𝑃𝑤𝑤𝑝𝑝𝑝𝑝 =  ∫ 𝑓𝑓𝑊𝑊(𝑣𝑣) ⋅ 𝑃𝑃(𝑣𝑣)d𝑣𝑣𝑣𝑣𝑐𝑐𝑐𝑐
𝑣𝑣𝑐𝑐𝑖𝑖

. (8) 

The polynomial substitution provides a more accu-
rate depiction of the average PPO since raw data 

was used and not smoothed data as with the Weibull 
curve and its associated parameter estimation tech-
niques. The latter method is advantageous because 
of its processing speed. Once the Weibull curves 
were generated, the wind turbine’s parameters can 
be changed and the probable power output can be 
calculated almost instantaneously by implementing 
Equation 8, while Equation 7 would require re-eval-
uation of the power polynomial for every single data 
entry. 

2. Methodology for analysing the wind data 
resolution 

The effect of the wind data’s resolution thereon can 
be determined with an established methodology for 
the calculation of the PPO of a wind turbine. The 
wind data resolution is a measure of the observation 
frequency at which the data is logged. It is widely 
accepted that a data resolution of one- hour inter-
vals provides satisfactory accuracy when working 
with wind data (Protogeropoulos, 1992). The goal 
of the analysis in this investigation is to determine 
the effect of the wind data resolution on the accu-
racy of subsequent power calculations. 

The effect of the resolution on the power calcu-
lations can be determined by keeping all variables 
constant, with an exception of the wind data’s reso-
lution. This process flow is shown in Figure 8, where 
LabVIEW was used to calculate the Weibull param-
eters of the wind data for each resolution interval. 
The Weibull parameters for each resolution interval 
were calculated using both the MLE and the CFM 
techniques to verify the results. 

 

 
Figure 7: Wind turbine power probability graph. 
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Figure 8: Resolution analysis flow chart. 

In the next step, the PPO of the wind turbine was 
calculated using the sixth-order polynomial turbine 
power curve. The Weibull parameters of the input 
data in this step, calculated as described in the pre-
vious paragraph were used. A baseline value for the 
PPO was calculated by substituting each wind speed 
data value into the sixth-order power curve polyno-
mial in Equation 9, for the Vestas V52-850 kW wind 
turbine (Vestas, 2012) and averaging all these val-
ues as given by Equation 7. 

 𝑃𝑃𝑝𝑝𝑐𝑐𝑝𝑝𝑝𝑝(𝑣𝑣)  =  −0.1616𝑣𝑣6 + 13.887𝑣𝑣5 − 435.21𝑣𝑣4 +
 5779.7𝑣𝑣3 −  26522𝑣𝑣2 +  38170𝑣𝑣 (9) 

The constant values of the polynomial in Equa-
tion 9 were calculated by fitting a sixth-order poly-
nomial through the manufacturer’s power curve. 
The polynomial provides a good representation of 
the transient phase (𝑣𝑣𝑐𝑐𝑖𝑖 → 𝑣𝑣𝑟𝑟) and most of the rated 
phase of the wind turbine’s power curve, but it is im-
portant to enforce the cut-in and cut-out velocities of 
the turbine explicitly in the models (Weibull PDF 
and polynomial substitution). 

The raw wind data set consists of data entries 
representing the average wind speed over 10-mi-
nute intervals, i.e., 𝜆𝜆 =  1, where 𝜆𝜆 is a scalar value 
ranging from 1 − 144 and where 1 represents the 
10-minute intervals and 144 represents a period of 
24 hours. A new resolution data set was created by 
down-sampling and averaging data entries from the 
raw data set. This is graphically depicted in Figure 
9, where 𝑥𝑥𝑖𝑖 denotes the raw data entries where 𝑖𝑖 =
 {1, 2, 3, … }. 

The effect of this down sampling process is 
shown in Figure 10 where the raw data resolution of 
𝜆𝜆 =  1 is shown alongside 𝜆𝜆 = 6 (hourly), 𝜆𝜆 = 72 
(every 12 hours), and 𝜆𝜆 = 144 (daily) intervals. 

3. Results 
The analysis of the power calculation accuracy as a 
function of the wind data resolution is split into dif-
ferent sections. Each section investigates the impact 
of a different part of the process followed. To start 
with, it is important that the impact of the resolution 
and data representation techniques on the power 
calculations must be kept in mind. As 𝜆𝜆 increases,  
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Figure 9: Resolution down-sampling depiction. 𝝀𝝀 = scaling scalars, x = raw data entries,  

and dots = continuation symbols. 

 
Figure 10: Various resolution data depiction. 

 
the number of available data entries decreases by 
the same factor. This reduces the MLE iterations, 
which is not advantageous since the MLE algorithm 
becomes less accurate as a result thereof. This is also 
true about the reduced observations available for 
the histogram in the CFM, which ultimately results 
in less accurate representation of the raw data set. 
The CFM, however, is less dependent on the num-
ber of observations in the histogram since it is only 
reliant on the envelope of the histogram. 

As already discussed, the Weibull distribution is 
the preferred method of representation for the wind 

data. The Weibull distribution is also used for the 
PPO calculation because of its simplicity. Both the 
MLE and the CFM techniques can be used to calcu-
late the shape and scale parameters of the Weibull 
distribution. It can be shown that the shape and 
scale parameters calculated with both the MLE and 
CFM techniques correlate fairly well with each other 
as shown in Table 3. Data used in this case study 
was with a resolution of 𝜆𝜆 =  1 ≈  10 𝑚𝑚𝑖𝑖𝑛𝑛𝑚𝑚𝑚𝑚𝑒𝑒𝑚𝑚 from 
site WM-01 (Alexander Bay) at a height of 62 m. 

From Table 3 it can be seen that both parameter 
estimation techniques produce fairly similar results 
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for the shape and scale parameters of the Weibull 
distribution when applied to the same data. The 
maximum difference between the MLE and CFM 
parameters was found in July with a value of 
9.718%. 

In the next step Weibull curves were generated 
using the shape and scale parameters of both the 

MLE and CFM techniques as previously discussed. 
Comparing these Weibull curves with the histogram 
of the raw data used in the calculations, it became 
apparent that these Weibull curves were a good rep-
resentation of the raw data as illustrated in Figure 
11. 

 
 

Table 3: Weibull parameter comparison. 

Month Curve fit method Maximum likelihood estimation Difference % 

Shape Scale Shape Scale Shape Scale 

Jan 1.686 6.393 1.695 6.683 0.552 4.431 

Feb 1.568 5.802 1.674 5.882 6.526 1.373 

Mar 1.542 5.844 1.577 6.201 2.243 5.919 

Apr 1.488 6.001 1.56 6.192 4.671 3.129 

May 1.655 5.248 1.702 5.534 2.799 5.295 

Jun 1.714 6.135 1.824 6.199 6.246 1.029 

Jul 1.808 8.276 1.993 7.554 9.718 9.123 

Aug 1.626 6.076 1.668 6.331 2.529 4.111 

Sep 1.659 6.55 1.725 6.689 3.89 2.101 

Oct 1.749 6.755 1.822 6.975 4.044 3.202 

Nov 1.646 7.097 1.687 7.273 2.44 2.441 

Dec 1.939 6.227 1.889 6.599 2.638 5.812 

 

 

 
Figure 11: Weibull probability curve comparison. 
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The average differences between the raw data’s 
normalised histogram and the Weibull curves are 
listed in Table 4. It was decided to use Weibull 
curves based on MLE calculations in the rest of the 
investigation because of the simplicity of Table 4. 

 
Table 4: CFM and MLE Weibull curve deviations 

from the raw data histogram. 

Month Curve fit method Maximum likeli-
hood estimation 

Jan 0.00856825 0.00184144 

Feb 0.00848454 0.00201015 

Mar 0.00865706 0.0023313 

Apr 0.0080255 0.00170549 

May 0.0085473 0.00228994 

Jun 0.00723385 0.00191825 

Jul 0.0123894 0.00510942 

Aug 0.00810165 0.00177779 

Sep 0.00888224 0.0013678 

Oct 0.00903515 0.00174053 

Nov 0.00795668 0.00117152 

Dec 0.0074091 0.00280499 

Average 0.00860756 0.002172385 

 

The next parameter, the effect of the wind data 
resolution on the PPO calculations, was investi-
gated. The PPO was calculated using Weibull curves 
and the turbine power curve as expressed in Equa-
tion 8. A Weibull distribution created from afore-
mentioned MLE parameters was used. It was found 
that there was a clear difference between the mean 
power output in each month depending on the res-
olution of the wind data used. An almost linear shift 
between the PPOs calculated using wind data with 
different resolutions can be seen in Figure 12. The 
coarser the wind data resolution, the lower the PPO 
observed across all months. The PPO difference is 
not the exact same amount for each month, but in-
dicates a fairly linear shift relative to the resolution 
used. 

The extent of the resolution’s effect on the PPO 
calculated as mentioned above was determined by 
a contrast to another PPO calculation. The most ac-
curate, but time-consuming, PPO calculation (𝑃𝑃𝑝𝑝𝑐𝑐𝑝𝑝𝑝𝑝) 
was done by direct substitution of the raw data into 
Equation 9. The PPO difference 𝑃𝑃𝑑𝑑𝑖𝑖𝑑𝑑𝑑𝑑 between the 
two approaches were calculated by Equation 10. 

     𝑃𝑃𝑑𝑑𝑖𝑖𝑑𝑑𝑑𝑑  =  �𝑃𝑃𝑝𝑝𝑐𝑐𝑝𝑝𝑝𝑝  −  𝑃𝑃𝑤𝑤𝑝𝑝𝑝𝑝�  (10) 

where 𝑃𝑃𝑤𝑤𝑝𝑝𝑝𝑝 is the aforementioned Weibull PPO. 
This difference can be seen in Figure 13 for each 

month as a function of the resolution used. The finer 
the resolution used for the calculations, the smaller 
the PPO difference observed. 

 
 

Figure 12: Monthly power probability comparison for various data resolutions. 
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Figure 13: The 3D representation of the resolution’s effects on the mean power calculations. 

 
An anomaly was observed at certain resolutions 

during the resolution analysis and can be seen in 
Figure 14 where, at a resolution of 𝜆𝜆 =  72, there is 
a prominent drop in the observed PPO differences 
across all months. A smaller anomaly was observed 
at =  48 , which was only when an increase in the 
PPO differences was recorded.  

Similar results were also obtained using a differ-
ent data set. Seasonality in the wind data was to be 
expected, but after calculating the Fast Fourier 
Transform (FFT) of the raw data for various months, 
a notable discovery was made. The FFT of the vari-
ous months are overlaid in Figure 15 to highlight 
any similarities between the different months. It is 
clear from Figure 15 that harmonics were present in 
the data. The peak located at a frequency of one day 
was expected, but there seems to be a prominent 
harmonic at a frequency of two – i.e. every 12 hours 
(𝜆𝜆 =  72). This correlated with the abnormality 
found in Figure 14. Following this trend, another 
peak as expected at a frequency of three, i.e., every 
eight hours correlating with the abnormality at 𝜆𝜆 =
48, but was associated with too much noise on the 
graph to make a definitive inference. 

As previously stated, the mean monthly power 
difference for the various resolutions are illustrated 
in Figure 14. 

4. Conclusions 
The investigation in this article leads to the conclu-
sion that wind data resolution has a prominent effect 
on the PPO calculation of a wind turbine: the 
coarser the wind data used, the larger the error in 
the PPO calculation. The assumption that wind data 
of an hourly resolution could be used for calcula-
tions must, therefore, always be done in considera-
tion to this error. The hourly averaged wind data’s 
PPO results differed by approximately 2.51% from 
the results obtained by the polynomial substitution. 
From the results obtained during this investigation, 
the following hypothesis was drawn: The error in the 
power output calculation of a wind turbine genera-
tor is linearly related to the resolution of the wind 
data used for the calculation. 

It was clear that the resolution of the wind speed 
data had a substantial effect on the accuracy of all 
relevant power probability calculations. Further in-



83    Journal of Energy in Southern Africa •  Vol 28 No 2 • May 2017 

vestigation can be done into what effect a fine reso-
lution has on the data in terms of data dependence, 
which may violate the criteria for the majority of sta-
tistical tests and procedures (Ramírez & Carta, 
2005). The nature of the aforementioned anomaly 

also warrants further investigation. Furthermore, it 
might be beneficial to investigate the effect of turbu-
lence intensity on power calculations. 

 

Figure 14: Differences in mean probable power output due to varying resolution. 

 

Figure 15: Fast Fourier Transform (FFT). 
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