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Abstract 
This paper introduces a solar resource index that re-
sponds to site-specific sky conditions resulting from 
stochastic movement and evolution of clouds. The 
developed solar resource classification index called 
probability of persistence (POPD) had limited capa-
bilities to distinguish persistent clear-sky conditions 
from persistent overcast-sky conditions. The metric 
proposed in this investigation, referred to as the solar 
utility index (SUI), seeks to extend the POPD index 
to a simple enough index that can singly discriminate 
different states of a solar resource. It gives a measure 
of the fractional time during which a solar resource 
exhibits predefined characteristics over a specific 
time period not exceeding the time interval between 
sunrise and sunset. These solar resource qualities, 
which are user-defined, measure: (1) the fluctuation 
characteristic of the solar resource magnitude, and 
(2) the solar resource diffuse and beam composition. 
Values of the indexes computed over daily time in-
tervals of 7:00–17:00 apparent solar time were 
tested for their solar resource classification qualities. 

Five distinct classes using K-means clustering algo-
rithm were identified for the solar radiation resource 
measured at eight stations in South Africa. The SUI 
was found to have superior solar resource discrimi-
nating and grouping abilities when compared with 
other indexes like POPD and fractal dimension.  
 
Keywords: fluctuation magnitude, K-means clus-
tering, relative composition  

Highlights 
• Solar utility index, a new solar resource 

classification index was defined. 
• Five classes of the solar resource in South 

Africa were identified.  
• The five clusters showed reasonably homo-

geneous solar resource properties. 
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1. Introduction 
Solar energy is becoming an increasingly important 
component of the energy mix required to confront 
current global energy and environmental challenges. 
Detailed knowledge about its availability and varia-
bility over different time-scales are important for its 
exploitation to be cost-effective and efficient. Solar 
resource variability is primarily caused by earth-sun 
relative motion and movement and evolution of 
clouds. Variations induced by the apparent motion 
of the sun relative to the earth are visible on diurnal 
and seasonal scales, and can be predicted precisely 
from well-established astronomical equations [1, 2]. 
Variability caused by clouds is less predictable, and 
manifests as short-term temporal fluctuations that 
modulate the otherwise uniform astronomically-
driven diurnal irradiance profiles. These stochastic 
fluctuations vary in amplitude, persistence (dura-
tion), and frequency of occurrence [3]. Assessment 
of the solar resource therefore requires a statistical 
approach using appropriate statistical metrics that 
model the variation in solar resource magnitude un-
der the influence of local stochastic weather influ-
ences over different time-scales. Several metrics that 
show varied solar resource discrimination capabili-
ties exist in available literature. These include fractal 
dimension (FD) of daily profile of global horizontal 
irradiance (GHI) [4], daily clearness index probabil-
ity distribution functions [5], granulometric size dis-
tribution of GHI [6], variability index (VI) [7] and 
daily probability of persistence POPD [8]. The FD of 
GHI as proposed by Maafi and Harrouni [4] 
measures the amount of daily solar irradiance fluc-
tuations that are due to changes in the state of the 
sky. Values of FD close to 1 indicate persistent sky-
conditions that are characteristic of either a clear day 
or an overcast day. These two extremes of the solar 
resource were distinguished by combining the FD 
with the daily clearness index KT, to present a solar 
resource classifier that identified three classes of so-
lar resource days using GHI data from two sites in 
Algeria [4]. The approach proposed by Soubdhan 
et al. [5] was that the classifier discriminates daily 
solar resource according to daily distribution histo-
grams of instantaneous clearness indexes kT. Four 
solar resource classes were identified at Guade-
loupe, an island in the West Indies, from a year-long 
sample of irradiance data measured at a frequency 
of 1 Hz. The membership of each class is subject to 
similarities in marginal probability density functions 
(pdfs) that are modelled using Dirichlet distribution 
functions from the daily histograms of clearness in-
dexes kT(t). An elaborate five-step computational al-
gorithm was used to implement the classification 
process [5]. Gastón-Romeo et al. [6], in another so-
lar resource classification approach, proposed the 
use of granulometric size distribution curve, a math-
ematical morphology parameter, as a descriptor of 

the shape and dynamic of GHI daily curves. A sam-
ple of 609 solar radiation curves were partitioned 
into 4 classes using the partition around medoids 
clustering algorithm. Kang and Tam [8], in a more 
recent study, proposed a new metric: the daily prob-
ability of persistence POPD. This metric measures 
the persistence of the normalised instantaneous 
magnitude of the GHI, i.e., instantaneous clearness 
index kT(t). Cases of consistently high or low magni-
tudes of kT(t) characteristic of clear-day or overcast-
day GHI time series will inevitably show similarly 
high POPD values [8] . These two extremes were dif-
ferentiated by pairing the POPD with daily clearness 
index to form the K-POP method [8]. This method 
was used to classify the solar resource into 10 clas-
ses. 

The present investigation focused on develop-
ing a solar resource metric that captures the cloud-
induced fluctuations of the solar resource and that is 
able to classify the solar resource according to dis-
tinctive effects of weather induced effects. It ex-
tended POPD index to a simple enough index that 
can singly discriminate different states of a solar re-
source. This index is referred to as the solar utility 
index (SUI), which may also be considered as an in-
dicator of the practical usefulness of a solar resource. 
The theoretical basis of the SUI and how it relates to 
the POP metric are discussed, followed by an outline 
of methodology to predict the properties of SUI and 
their subsequent demonstration, including solar re-
source classification capabilities.  

2. The solar utility index  
The SUIτ measures the fractional time when the so-
lar resource has short-term fluctuation magnitudes 
and energy quality that satisfy a given set of condi-
tions, for a solar resource available during a time τ, 
between sunrise and sunset. The short-term fluctua-
tion characteristic is given by |ΔkT

* |, a time series of 
absolute changes in kT

* , the instantaneous clear sky 
index (CSI)) [9]. The CSI is simply a ratio of meas-
ured GHI to clear-sky global horizontal irradiance 
GHIclear, predicted by a suitable clear-sky model. A 
clear-sky model developed by Ineichen and Perez 
[10] and its MATLAB implementation developed by 
Sandia National Laboratory [11] were used to gen-
erate site-specific daily time series of GHIclear in this 
investigation. The fluctuation characteristic |ΔkT

* | 
for a time interval Δti = ti+1-ti within a time span τ, 
is given by Equation 1. 

 |ΔkTi
* | =|kT

* (τ,ti+Δt) - kT
* (τ,ti)|  (1)  

The energy quality is quantified by a new index 
called the relative composition index (RCI), which, 
for a time interval Δti =  ti+1-ti, is defined according 
to Equation 2. 
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     RCIi = [kbd(τ,ti+Δt)+kbd(τ,ti)]/2 (2) 

The kbd = (DHI-BHI) GHI⁄  is the instantaneous 
relative difference between the diffuse horizontal ir-
radiance DHI and beam horizontal irradiance BHI 
at time ti, within the time span τ. These instantane-
ous indexes vary from a maximum value of 1 for 
overcast sky-conditions, through 0 when the beam 
and diffuse components are equal, to a negative 
value that is indicative of clear-sky conditions given 
by (DHIclear -BHIclear) GHIclear⁄ . The solar utility in-
dex for a solar resource spanning the time period τ 
is then defined by Equation 3, which can be inter-
preted as the joint probability density function of a 
solar resource having fluctuation magnitude |ΔkTi

* | 
less than or equal to Δkth

∗  and relative composition 
index, RCIi less than or equal to RCIth within a time 
span τ. 

     SUIτ(Δkth
∗ ,RCIth) = 

     ∑ Δti(RCIi ≤ RCIth∩|ΔkT
* | ≤ Δkth

∗ )N-1
i=1 τ⁄  . (3) 

where RCIth and Δkth
∗  are reference values that de-

fine the threshold values of the RCI and fluctuation 
magnitude, respectively; and N = τ/Δt is the number 
of solar resource sampling points within the time 
span τ. The SUIτ is notably a function of two mar-
ginal probabilities related to the cumulative distribu-
tion functions (CDFs) of the |ΔkT

* | and RCI accord-
ing to Equations 4 and 5. 

     POPτ
*(Δkth

∗ ) =F�ΔkT
* �(Δkth

* ) = 

       ∑ Δti(|ΔkT
* | ≤ Δkth

∗ )N
i=1 τ⁄   (4) 

      PRCτ(RCIth) = FRCI(RCIth) =     
     ∑ Δti(RCIi ≤ RCIth)N

i=1 τ⁄ . (5) 

The marginal probability distribution POPτ
*(Δkth

∗ ) 
in Equation 4 is equivalent to the probability of per-
sistence metric originally proposed by Kang and 
Tam [8]. The variation of POPτ

*(Δkth
∗ ) with the thre-

shold values Δkth
∗  can be obtained from F�ΔkT

* �(Δkth
* ), 

which is the CDF of |ΔkTi
* | evaluated at Δkth

* . Equa-
tion (5) defines a marginal probability distribution 
PRCτ(RCIth) called probability of relative composi-
tion (PRC), which is the probability that 
RCIi ≤ RCIth. It follows that FRCIi(RCIth), which is the 
CDF of the RCI, describes the variation of the PRC 
with the relative composition threshold. The PRC is 
related to the concept of utilisability, which is de-
fined as the fraction of insolation incident on a col-
lector’s surface that is above a given threshold or 
critical value [12]. The functional relationship be-
tween the solar utility index and the two marginal 
probabilities SUIτ(τ,Δt,Δkth

∗ ,kbdth
* ) = f (POPτ

*(Δkth
∗ ), 

 PRCτ(RCIth)), depends on the probabilistic de-
pendence of the two marginal events |ΔkT

* | ≤ Δkth
∗  

and RCIi ≤ RCIth. If they were statistically independ-
ent, then their joint probability distribution 
SUIτ(Δkth

∗ ,RCIth) could equal the product of their 
marginal probabilities POPτ

*(Δkth
∗ ) × PRCτ(RCIth).  

3. Methodology 
3.1 Experimental  
The irradiance information used in this investigation 
was obtained from ground irradiance results meas-
ured at eight stations with differing latitudes, alti-
tudes and microclimates. The specific locations of 
the stations are shown on a map in Figure 1, which 
also shows the respective location altitudes in me-
tres. 

Figure 1: Map showing the locations and alti-
tude of the radiometric stations that provided irra-

diance data, where RVD = Ritchersveld , VAN = 
Vanrhynsdorp, GRT = Graaff-Reinet, NMU = Nelson 
Mandela Metropolitan University, UFS = University 
of Free State, UPR = University of Pretoria, VRY = 
Vryheid, and KZH = University of KwaZulu-Natal 

Howard College.  
 

The station names that correspond to the acro-
nyms displayed on the map are: Ritchersveld (RVD), 
Vanrhynsdorp (VAN), Graaff-Reinet (GRT), Nelson 
Mandela Metropolitan University (NMU), University 
of Free State (UFS), University of KwaZulu-Natal 
Howard College, (KZH), Vryheid (VRY) and Univer-
sity of Pretoria (UPR). They form part of Southern 
African Universities Radiometric Network (SAU-
RAN), an initiative setup to provide high-resolution, 
ground-based radiometric data for Southern Africa 
[13, 14]. The solar radiation components, global 
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horizontal irradiance GHI, beam normal irradiance 
BNI, and diffuse horizontal irradiance DHI, are 
measured using state-of-the-art Kipp and Zonen 
[15] radiometers and are archived as one-minute-, 
hourly- and daily-averaged data. These data can be 
publicly accessed through a website interface [14]. 
A sample of one-minute-averaged solar irradiance 
data (∆t = 60s) measured over the year 01 July 
2014–30 June 2015 was used. The BNI was con-
verted to its horizontal surface component beam 
horizontal irradiance BHI through multiplication by 
the cosine of the solar zenith angle, i.e., 
BHI = BNI cos θz. Daily time series of the solar re-
source features (Equations 2 and 3) were generated 
from this data sample using MATLAB Release 
2011a. The solar utility indexes and the other pa-
rameters were computed for daily time intervals τ 
during 7:00 to 17:00 apparent solar time, with the 
fluctuation Δkth

∗  and relative composition RCIth 
thresholds set respectively at 0.01 and 0. These daily 
probabilities are denoted by replacing the general 
time interval subscript τ by D, i.e., SUID, POPD

*  and 
PRCD.  

3.2 SUI solar resource application to  
classification of solar resource 
The classification properties of the SUI are deter-
mined from a solar resource classifier built from the 
computed daily values of SUID using K-means 
method to identify homogenous solar resource clus-
ters. For a collection of m, SUID

n  data points where 
n = 1, 2, ...m, the K-means clustering algorithm it-
eratively groups the data points into k disjoint clus-
ters Cj (j = 1, 2, ...k), each containing mj data points 
subject to minimisation of the within-cluster-sum-of-
squares error function [16]. The sum-of-square error 
is given by Equation 6.  

     E= ∑ ∑ �SUID
n-Mj�

2
n∈Cj

k
j=1  (6) 

where Mj is the centre of the jth cluster, given by the 
mean of the data points belonging to the cluster. A 
collection of solar resource classification features 
consisting of a total 8 × 365 sample of daily solar 
utility indexes was used. To determine the number 
of clusters k a distribution histogram of the SUID data 
visually identified the likely partitions of the data 
points. The K-means algorithm was applied to the 
data to create the clusters using a built-in function in 
the statistical toolbox of MATLAB software with the 
minimisation of the squared Euclidean distance as 
the clustering score. Measures known as silhouette 
values, s(Cj,i), were calculated for each datum i in 
each cluster Cj using a built-in MATLAB function 
also named silhouette to determine the quality of the 

clusters. The silhouette values range from +1 indi-
cating well-separated datum, through 0 for datum 
on the border of two clusters, to -1 for misclassified 
or outlier datum [17]. The cluster-specific averages 
s̅(Cj) measure how tightly grouped are all the data 
in the respective clusters. Values where s̅(Cj) > 0.5 
were accepted to be representative of reasonably 
clustered data points. 

4. Results and discussion 
Solar utility index as a function of POPD

*   
and PRCD 
A somewhat moderate dependence exists between 
the marginal probabilities POPD

* (0.01) and PRCD(0) 
as shown in Figure 2(a) and is characterised by a 
correlation coefficient of 0.65. This probabilistic de-
pendence is substantiated by Figure 2(b), which re-
veals a non-linear relation between joint probability 
SUID (0.01, 0) and the product of the marginal prob-
abilities POPD

* (0.01)×PRCD(0). The solid line in 
Figure 2(b), assumes independence of the marginal 
probabilities i.e. SUID (0.01, 0) = POPD

* (0.01)× 
PRCD(0); and shows that this assumption generally 
underestimates the SUID. The mean bias error and 
root mean square error relative to the sample mean 
SUID associated with this assumption for this sample 
of data are – 5.1% and 9.2%, respectively. A quad-
ratic fit as shown by the broken line on the same 
graph gives a better fit with coefficient of determina-
tion value R2 = 0.99 and a root mean square error 
relative to mean SUID of 5.8%.  

4.2 Variation with Δkth
∗ , and RCIth 

The variation of SUID with Δkth
∗ , and RCIth can be 

indirectly inferred from the daily Cumulative Distri-
bution Functions, F�ΔkT

* �(Δkth
* ) and FRCI(RCIth). Fig-

ure 3 illustrates these functions for three solar re-
source profiles that exhibit different characteristics. It 
was found that, for PRCD > 0, SUID increases with 
the fluctuation threshold Δkth

∗  since 
POPD

* (Δkth
* ) = F�ΔkT

* �(Δkth
* ) is a monotonically in-

creasing function of Δkth
∗  despite the error associated 

with estimating the SUID via POPD
* ×PRCD. By ex-

amining the FRCI(RCIth) curve we also similarly ob-
serve that for POPD

*  > 0 , increasing RCIth results in 
higher values of PRCD hence higher SUID. The solar 
utility indexes can be computed for shorter time in-
tervals τ, such as hourly intervals, or longer time in-
tervals τ, such as months, as long as the irradiance 
data sampling time interval Δt, allows for large 
enough sample sizes, N= τ/Δt. Longer sampling 
time intervals may, however, mask the effect of the 
short-term solar resource variability. 
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Figure 2: (a) Relationship between the marginal probabilities POPD

* (0.01) and PRCD(0).  (b) Relation-
ship between SUID (0.01, 0) and the product of marginal probabilities POPD

* (0.01)∙PRCD(0). 
 

Figure 3: (a)-(c) Typical daily solar resource component (BHI and DHI) time series for different days 
showing different solar resource variability as a function of apparent solar time. Solar utility index associ-
ated with each solar resource profile is displayed on each corresponding figure. The cumulative distribu-

tion curves matching the solar profiles are shown in subplots (d)–(f) for the solar resource fluctuation 
magnitude and in subplots (g)–(i) for the relative composition index.  
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4.3  The SUID solar resource classification 
qualities 
This section demonstrates the solar resource classifi-
cation qualities of the SUID. A sample of 365×8 val-
ues of SUID, generated using the following parame-
ters: Δkth= 0.01, RCIth= 0, ∆t = 1 min and τ = 
7:00-17:00 apparent solar time, was considered.  

Clustering results 
Figure 4(a) shows a histogram of the distribution of 
the sample SUID values for all stations, from which 
one can identify the following five cluster-defining-
boundaries: SUID ≥ 0.8, 0.6 ≤ SUID < 0.8, 0.4 ≤  
SUID < 0.6, 0.2 ≤ SUID < 0.4, and SUID < 0.2; la-
belled cluster 1 to 5 respectively. The quality of each 
of these clusters is shown by the silhouette plot in 
Figure 4(b). A small percentage of its population of 
about 4% is misclassified as indicated by the nega-
tive silhouette values, despite the largest cluster-av-
eraged silhouette values recorded by cluster 5 point-
ing to a good clustering. Some misclassified data 
representing 1.3%, 2.4% and 0.25% of the respec-
tive cluster populations was also shown in clusters 1, 
2 and 3. Applying the K-means, clustering method 
shows an improvement in the data clustering as 
shown in the silhouette plot of Figure 4(c). Cluster 5 
again appeared to be the best clustered. Cluster 3 
and 4 show some data points that have negative sil-
houette values, but constitute only 1.8% and 1.1% 
of the respective cluster populations.  

Interpreting the clusters 
Figure 5(a) shows the clustered SUID as a function 
of CSID, the daily-averaged value instantaneous 
CSI. The results show a positive correlation between 
the SUID and CSID following an exponential relation-
ship as shown by the solid line that traces the trend 

of cluster centroid on the graph. The results also 
show a spread of data points around these cluster 
centroids and the extent of these dispersions vary as 
shown in Figure 5(b) by the sample standard devia-
tions of the cluster CSID and SUID. Cluster 5 is the 
least compact with largest spread of CSID. It is con-
ceivable that 2 smaller and more compact clusters 
can be obtained by splitting cluster 5 along the line 
CSID = 0.6, illustrated by the thick broken vertical 
line in Figure 5(a). Clusters 1 and 2 appear to be the 
most compact clusters judging from the spread of 
their CSID and SUID values.  

Further characteristics of the five clusters are 
demonstrated in in Figures 6(a) and (b), which show 
the SUID as a function of daily-averaged fluctuation 
magnitude 〈|ΔkT|〉D and daily-averaged relative 
composition index RCID respectively. There is a gen-
eral increase in solar resource 〈|ΔkT|〉D from cluster 
1 to cluster 4. Cluster 5 shows a slight deviation from 
this trend, an indication of significant population of 
low fluctuation cloudy-sky solar resource within this 
cluster. The dispersion of the fluctuation magnitudes 
within each cluster also tended to increase with the 
cluster number as shown by the cluster-specific 
standard deviations in Figure 6(c). Figure 6 (b), 
while recalling that the RCID is an indication of the 
balance between the DHI and BHI, reveals that BHI 
dominated the solar resource belonging to clusters 1 
to 3 (RCID < 0). Cluster 4, having and average RCID 
close to 0, appears to be evenly populated by both 
BHI dominated, and DHI dominated, solar re-
source. An additional cluster is conceivable from 
splitting cluster 4 along the RCID = 0. The within-
cluster standard deviations of RCID are shown in Fig-
ure 6(c) and show a general increase with cluster 
number.

 
Figure 4: (a) Histogram showing the distribution of the SUID values and; Figures 4(b) and (c) are Sil-

houette plots of the classifications obtained using; boundary SUID ranges identified from the Figure 4(a) 
and, K-means clustering algorithm respectively. The numbers displayed to two decimal places and as 
percentages on each cluster plot show cluster-specific, average silhouette value s̅(Cj), and percentage 

population, respectively. 
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Figure 5: (a) Clustered SUID as a function of clear-sky index CSID and (b) cluster-specific relative 

standard deviation of CSID and SUID variation among clusters. C1 to C5 are the clusters identified by K-
means clustering of the SUID. The coordinates of the cluster centroids, marked by, are defined by the 

average of the respective cluster SUID and CSID. 

 
Figure 6: Clustered SUID as a function of (a) daily averaged absolute solar resource fluctuation magni-

tude 〈|ΔkT|〉D and (b) Daily Relative Composition Index RCID; (c) cluster specific standard deviations of the 
fluctuation magnitude and the relative composition index. The vertical broken lines in (a) and (b) repre-

sent the threshold values used to define the SUID, Δkth
∗ = 𝟎𝟎. 𝟎𝟎𝟎𝟎, and RCIth= 0 respectively. The coordinates 

of the cluster centroids, marked by, are defined by the average of the respective cluster variables. 

Figure 7: Summary characteristics of the 5 clusters. 
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Figure 8: Samples of diurnal profiles of horizontal; beam, and diffuse irradiance belonging to, from left to 
right, cluster 1 through 5 and sampled, top to bottom, at the within-cluster maximum, median and mini-

mum values of the respective cluster SUID. The graphs also show the SUID that is characteristic of each of 
the selected day’s solar resource. 

 
Figure 7 gives a summary of the characteristic 

statistics of the clusters in terms of the mean values 
of SUID, CSID, RCID and 〈|ΔkT|〉D. Figure 8 shows 
typical solar resource diurnal profiles sampled from 
each cluster at: maximum, median, and minimum 
SUID values. The profiles vary across the clusters in 
amplitude as well as the frequency and duration of 
cloud induced discontinuities. The trends of these 
variations correspond to the trends of the summary 
statistics depicted in Figure 7. For example, cluster 4 
profiles shown in Figure 8 appear to have the high-
est frequency of discontinuities in agreement with 
mean value of 〈|ΔkT|〉D, which is also largest for clus-
ter 4 as shown in Figure 7. It is also noted that the 
solar resource profiles at the shared boundaries of 
the clusters show similar properties. 

Cluster variation amongst stations 
The observed varying of the five clusters was also 
investigated across the eight stations. Figure 9 shows 
silhouette plots of the five clusters for each station. 

The results reveal a distribution of cluster popula-
tions that varied across the stations and appeared to 
be a function of site specific climatic conditions. For 
example, the solar resources at NMU and KZH were 
dominated by cluster 5-type solar resource, which 
represents the lowest values of the SUI, hence an in-
dication of high prevalence of cloudy-sky condi-
tions. The NMU and KZH are located in coastal cities 
of Port Elizabeth and Durban, respectively, and 
were characterised by sky conditions that are 
cloudy, or with shade, haze or low sun intensity for 
37.5% and 46.5% of the possible sunshine hours, 
respectively [18]. The RVD, VAN, UFS and UPR, on 
the other hand, appeared to have a higher preva-
lence of clear-sky periods as shown by the larger 
populations of data points in clusters 1 and 2.  

5. Conclusions 
This paper proposes and presents a new solar re-
source metric named solar utility index that 
measures the fractional time when a solar resource 
a  
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Figure 9: The clusters identified by the K-means algorithm for each of the eight stations. 

  
has short-term fluctuation magnitudes and energy 
quality that satisfy given or set conditions during a 
time period τ within a solar resource time span from 
sunrise to sunset. Five clusters were identified and 
were found to have reasonably homogeneous intra-
cluster properties, in terms of energy content CSID, 
short-term variability 〈|ΔkT|〉D, and relative DHI and 
BHI composition RCID. A closer look at the cluster 
properties, however, revealed that clusters 5 and 4 
can be split into smaller clusters by taking into ac-
count the distribution of their CSID and RCID, respec-
tively. The theoretical basis of the SUI suggests that 
it can be computed for periods longer or shorter than 
the 10 hour daily period considered. It is therefore 
important to investigate its solar resource classifying 
properties for periods shorter or longer than the 
daily period. It is also interesting to investigate how 
the SUI performs as a solar resource forecasting met-
ric. 
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