Determination of oxidation characteristics and decomposition kinetics of some Nigerian biomass


  • Edmund C Okoroigwe University of Nigeria
  • S O Enibe University of Nigeria
  • S O Onyegegbu University of Nigeria



thermogravimetric analysis, combustion index, activation energy, biomass, bioenergy reaction order


The oxidation characteristics and devolatilisation kinetics studies of palm kernel shell (Elaeis guineensis), African bush mango wood and shell (Irvingia wombolu), and African border tree wood (Newbouldia laevis), were carried out by the thermogravimetric method. A thermogravimetric analyser TA Q500 instrument was used at a heating rate of 30 °C.min-1 under oxidative conditions. It was observed that all the samples followed a two-stage structural decomposition between 200 °C and
500 °C. The greatest mass loss rate occurred within the oxidation stage (200–375 °C) in all the samples. The ignition temperature of the samples ranged from 275–293 °C while their burnout temperatures ranged from 475–500 °C. During the oxidation
stage, African bush mango shell was the most reactive sample, while palm kernel shell was the least. During the char combustion stage (375–500 °C), the reactivity of palm kernel shell was the highest. The average activation energy of the samples for the entire decomposition period are 140, 270, 131 and 231 kJ.mol-1 respectively. The biomass samples considered are thus suitable for combustion purposes for bioenergy production with minimal external energy input.


Download data is not yet available.


Ainge L. and Brown, N. Irvingia genensis and wombolu: a state of knowledge report undertaken for the Central African Regional program for the environment. Oxford Forestry Institute, Department of Plant Sciences, University of Oxford United Kingdom, 2001. Online:

pdf (accessed 23/3/2015).

Alvarez, E. and González, J. F. 1999. Combustion of Spanish coals under simulated pressurized–fluidizedbed-combustion conditions. Fuel 78: 335–340.

Anyaoku, O. A. 2007. Nigerian bio-fuel policy and incentives, Official gazette of the Nigerian bio-fuel policy and incentives, Federal Republic of Nigeria. Online: GAZETTED.pdf.

Apaydin-Varol, E. Polat, S. and Putun, A. E. 2014. Pyrolysis kinetics and thermal decomposition behaviour of polycarbonate – a TGA-FTIR study. Thermal Science 18(3): 833 – 842.

Ayuka, E. T., Duguma, B., Franzel, S., Kengue, J., Mollet, M., Tiki-Manga, T. and Zenkeng, P. 1999. Uses, management and economic potential of Irvingia gabonensis in the humid lowlands of Cameroon.

Forest Ecology and Management 113(1): 1–9.

Bafor, E. and Sanni, U. 2009. Uterine contractile effects of the aqueous and ethanol leaf extracts of newbouldia laevis (Bignoniaceae) in vitro. Indian Journal of Pharmaceutical Science, 2009, 71(2):124–127.

Coats, A. W. and Redfern, J. P. 1964. Kinetic parameters from thermogravimetric data. Nature 201:68–69.

Conesa, J.A. and Rey, L. 2015. Thermogravimetric and kinetic analysis of the decomposition of solid recovered fuel from municipal solid waste, Journal of Thermal Analysis and Calorimetry. 120: 1233–1240. doi 10.1007/s10973-015-4396-4.

Department of Minerals and Energy. 2007. Biofuels industrial strategy of the Republic of South Africa, Online: (accessed 09/02/2015).

Ejele, A.E., Enenebaku, C.K., Akujobi, C.O. and Ngwu, S.U. 2012. Effect of microbial spoilage on phytochemistry, antisickling and antimicrobial potential of Newbouldia laevis leaf extract, International Research Journal of Microbiology 3(4):113-116.

El may, Y., Mejdi, J., Sophie D., Gwenaelle, T, and Rachid, S. 2012. Study on the thermal behaviour of different date palm residues: characterisation and devolatilization kinetics under inert and oxidative atmospheres. Energy 44: 702–709.

Extension Bulletin. 1999. Production and utilization of ‘ogbono, African bush mango’ (Irvingia gabonensis), Extension Bulletin no 140, Horticulture Series no 4. National Agricultural Extension and Research Liaison Services, Federal Ministry of Agriculture and

Water Resources, ABU Zaria.

Ghetti, P., Leandro, R. and Luciana, A. 1966. Thermal analysis of biomass and corresponding pyrolysis products. Fuel 75(5):565 – 573.

Idris, S. S., Rahman, N. A. and Ismail, K. 2012. Combustion characteristics of Malaysian oil palm biomass, sub-bituminous coal and their respective blends via thermogravimetric analysis (TGA).

Bioresource Technology 123:581–591.

Jeguirim, M., Bikai, J., El may, Y., Limousy, L., and Njeugna, E. 2014. Thermal characterisation and pyrolysis kinetics of tropical biomass feedstocks for energy recovery. Energy for Sustainable

Development 23:188–193.

Lin, R., Zhu, Y. and Tavlarides, L.L. 2013. Mechanism and kinetics of thermal decomposition of biodiesel fuel. Fuel 106:593–604.

Lu, J-J. and Chen, W-H. 2015. Investigation on the ignition and burnout temperatures of bamboo and sugarcane bagasse by thermogravimetric analysis. Applied Energy 160:49–57.

Luangkiattikhun, P., Tangsathitkulchai, C. and Tangsathitkulchai, M. 2008. Non-isothermal thermogravimetric analysis of oil-palm solid wastes. Bioresource Technology 99:986– 997.

Moon, C., Sung, Y., Eom, S. and Choi G. 2015. NOx emissions and burnout characteristics of bituminous coal, lignite, and their blends in a pulverized coal-fired furnace. Experimental Thermal and Fluid

Science 62:99–108.

Munir, S., Daood, S. S., Nimmo, W., Cunliffe, A. M. and Gibbs, B. M. 2009. Thermal analysis and devolatilisation kinetics of cotton stalk, sugar cane bagasse and shea meal under nitrogen and air

atmospheres. Bioresource Technology 100:1413-1418.

Ninan, K. N. 1989. Kinetics of solid-state thermal decomposition reactions, Journal of Thermal Analysis 35:1267–1278.

Niu, Z., Liu, G., Yin, H., Wu, D. and Zhou, C. 2016. Investigation of mechanism and kinetics of non-isothermal low temperature pyrolysis of perhydrous bituminous coal by in-situ FTIR. Fuel 172:1–10.

Okoroigwe, E. C. Energy conversion of woody biomass by fast pyrolysis method. 2014. PhD dissertation. University of Nigeria, Nsukka, Nigeria.

Okoroigwe, E. C. and Saffron, C. M. 2012. Determination of bio-energy potential of palm kernel shell by physicochemical characterisation. Nigerian Journal of Technology. 31(3): 329–335.

Okpala, B. 2015. Incredible benefits of newbouldia laevis (ogilisi). Global food book. Online:

Park, S. W. and Jang, C. H. 2012. Effects of pyrolysis temperature on changes in fuel characteristics of biomass char. Energy 39:187 – 195.

Parthasarathy, P. Narayanan, K. S. and Arockiam, L. 2013. Study on kinetic parameters of different biomass samples using thermo-gravimetric analysis. Biomass and Bioenergy 58:58–66.

Rainville, E. D. 1960. Special Functions. New York: Macmillan.

Roberts, M. J., Everson, R. C., Domazetis, G, Neomagus, H.W.J.P., Jones, J.M., Van Sittert, C.G.C.E., Okolo, G.N., Van Niekerk, D. and

Mathews, J. P. 2015. Density functional theory molecular modelling and experimental particle kinetics for CO2–char gasification. Carbon 93:295–314.

Rostam-Abadi, M., DeBarr, J. A. and Moran, D. L. 1988. Burning characteristics of partially devolatilized coals. Fuel Chemistry 33:869-874.

Sahu, S. G., Sarkar, P., Chakraborty, N. and Adak, A. K. 2010. Thermogravimetric assessment of combustion characteristics of blends of a coal with different biomass chars. Fuel Processing Technology 91(3):369–378.

Shen, D. K., Gu, S., Luo, K. H., Bridgwater, A. V., and Fang, M. X. 2009. Kinetic study on thermal decomposition of woods in oxidative environment. Fuel 88:1024–1030.

Soccol, C. R., Vandenberghe, L. P. S., Costa, B., Woiciechowski, A. L., De Carvalho, J. C., Medeiros A. B. P., Franscisco, A. M. and Bonomi, L. J. 2005. Brazilian biofuel program: An overview. Journal of Scientific and Industrial Research 64(11):897–904.

Son, J. W. and Sohn, C. H. 2015. Evaluation of burnout performance of biomass wastes in a rocketengine-based incinerator. Fuel 143:308–317.

União Brasileira do Biodiesel e Bioquerosene (Ubrabio) and Getulio Vargas Foundation. 2010. Biodiesel and its contribution to Brazilian development, 1-34.


Vamvuka, D. and Sfakiotakis, S. 2011. Combustion behaviour of biomass fuels and their blends with lignite. Thermochimica Acta 526:192–199.

Wilson, L., Yang, W., Blasiak, W., John, G. R.and Mhilu, C. F. 2011. Thermal characterization of tropical biomass feedstocks, Energy Conversion and Management 52:191–198.

Xiang-guo, L., Bao-guo, M., Li, X., Zhen-wu, H. and Xin-gang, W. 2006. Thermogravimetric analysis of the co-combustion of the blends with high ash coal and waste tyres. Thermochimica Acta 441:79–83.

Zhang, D., Wall, T.F., and Tate, A.G. 1992. The reactivity of pulverized coal char particles; experiments using ignition, burnout and DTG techniques and partly burnt chars. Fuel 71:1247–1253.




How to Cite

Okoroigwe, E. C., Enibe, S. O., & Onyegegbu, S. O. (2016). Determination of oxidation characteristics and decomposition kinetics of some Nigerian biomass. Journal of Energy in Southern Africa, 27(3), 39–49.