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Abstract 
This paper fits the three-parameter log-logistic (3LL) 
distribution to sulphur dioxide (SO2) monthly emis-
sions in kilograms per gigawatt hour (kg/GWh) and 
in milligrams per cubic nano metre (mg/Nm3), at 13 
of Eskom’s coal fired power-generating stations in 
South Africa. The aim is to quantify and describe the 
emission of sulphur dioxide at these stations using a 
statistical distribution, and to also estimate the prob-
abilities of extreme emissions and exceedances 
(emissions above a certain threshold). Using the 3LL 
distribution is proposed as such a distribution. The 
log-logistic distribution is a special form of a Burr-
type distribution. Various goodness-of-fit measures, 
including the Kolmogorov Smirnov, the Anderson 
Darling and some graphical tests, are employed to 
test if the 3LL distribution is a good fit to the data. 
The maximum likelihood method is used to estimate 

the parameters. The distribution fit is important as it 
then becomes possible to quantify and manage the 
SO2 emissions effectively. The 3LL distribution, 
which is compared with three other distributions, 
gave the best overall fit to most of the power stations. 
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1. Introduction  
Eskom is South Africa’s electricity public utility, es-
tablished in 1923 as the Electricity Supply Commis-
sion by the government of South Africa. It is the larg-
est producer of electricity in Africa, and among the 
top seven utilities in the world in terms of generation 
capacity and among the top nine in terms of sales. 
Eskom generates approximately 95% of electricity 
used in South Africa. About 95% of its generating 
capacity comes from coal. Ash emissions from 
Eskom’s coal-fired power stations have been re-
duced by more than 90% since the early 1980s due 
to the installation of efficient pollution abatement 
technology and the decommissioning of older plants 
(Eskom Emission Monitoring, 2012). At present, 
Eskom has 13 coal-fired generating stations giving 
various emissions, including sulphur dioxide (SO2). 
Medupi and Kusile are two new stations and are not 
included in the analysis.  

Coal-fired power stations release harmful chem-
icals (stack emissions) into the atmosphere, causing 
environmental problems. Sulphur dioxide, for ex-
ample, is a precursor to acid deposition (including 
acid rain) and secondary particulate matter for-
mation, and is also toxic. Eskom must comply with 
legally prescribed limits on a number of emissions to 
avoid heavy penalties. Exceeding the emission limits 
may result in the forced shutdown of generating 
units. Emission levels must therefore be monitored 
and alarmed continuously. A stack test is a proce-
dure for sampling a gas stream from a single sam-
pling location at a facility, unit, or pollution control 
equipment. Each of Eskom’s stations could be a 
unit, and there could also be more than one unit at 
a station. The stack is used to determine a pollutant 
emission rate, concentration, or parameter while the 
facility, unit, or pollution control equipment is oper-
ating at conditions that result in the measurement of 
the highest emission or parameter values (prior to 
any control device) or at other operating conditions 
approved by the regulatory authority. Stack emis-
sion control programmes are effective only if emis-
sions are controlled at the source, which requires a 
highly accurate monitoring schedule. Stack emis-
sions are measured for various reasons, including to 
determine if emission permits requirements are met 
or exceeded, for emissions permit renewal, or for 
process control purposes. Reporting on environ-
mental performance has several benefits, including 
providing management with information to help ex-
ploit the cost savings that good environmental per-
formance usually brings; it also gives Eskom the 
chance to set out what they believe is significant in 
their environmental performance. Companies that 
measure (to quantify), manage and communicate 
their environmental performance are inherently well 
placed. They understand how to improve their pro-
cesses, reduce their costs, comply with regulatory re-
quirements and stakeholder expectations, and take 

advantage of new technologies on the market. This 
paper describes SO2 emissions at 13 Eskom coal-
fired power stations measured by fitting a three-pa-
rameter log-logistic (3LL) distribution. The maxi-
mum likelihood method is used to estimate the pa-
rameters. The 3LL is compared with three other 
distributions, namely the normal, log-normal and 
three-parameter Weibull. A literature review follows 
in Section 2; methodology is outlined in Section 3; 
the data and results are given in Section 4 and con-
clusions in Section 5. 

2. Literature review 
Little if any modelling of pollutant emissions in 
South Africa is done. Geogopolous et al. (1982) 
stated that the answer to the question of which dis-
tribution best fits the air quality/emissions data was 
shown to depend in general on the pollutant, the 
time period of interest, the averaging time of the 
data, the location and other factors. Generally there 
is no priori reason to choose one particular distribu-
tion over the other (Seinfeld et al., 1998). Yi Zhang 
et al. (1994) investigated the statistical distribution 
of on-road carbon monoxide and hydrocarbon 
emissions from various locations in the United 
States, and found that the emissions are statistically 
gamma−distributed. Rumburg et al. (2001) investi-
gated the statistical distribution of particulate matter 
in Spokane, Washington and concluded that the dis-
tribution was best fitted by a three-parameter log-
normal distribution and a generalised extreme value 
distribution. Hadley et al. (2003) investigated the 
distribution of annual mean daily SO2 in the United 
Kingdom and found the log-normal distribution to 
be a better fit for the data than the normal. One of 
the most important papers on modelling greenhouse 
gas emissions is that of Smith (1989), where he ap-
plies the extreme value theory to the study of hourly 
readings of ozone in Houston, Texas, since exces-
sive levels of ozone are taken to indicate high air pol-
lution. Smith concluded that the exponential distri-
bution gave a poor fit in the upper tail whereas the 
generalised Pareto distribution seemed adequate.  

The method of estimation of parameters for the 
chosen statistical distribution is also important when 
emission data is available. Ashkar et al. (2003) com-
pared the maximum likelihood (ML) and the gener-
alised probability weighted moments (GPWM) in es-
timating the parameters of a log-logistic, and found 
that the ML outperformed the GPWM method over 
all parameter space and sample sizes. Ashkar et al. 
(2006) compared the method of generalised mo-
ments, ML, the methods of the GPWM and the 
method of log moments for the estimation of the pa-
rameters and quantiles in the two-parameter log-lo-
gistic. Their simulation results showed that the GM 
method outperformed the other competitive meth-
ods in the two-parameter log-logistic case when the 
moment orders are appropriately chosen. Abbas et 
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al. (2015) proposed the Bayesian method using the 
metropolis algorithm within the Gibbs sampling un-
der the reference prior to estimate the parameters of 
the log-logistic. Singh et al. (1993) developed a new 
competitive method of estimating parameters of the 
log-logistic based on the principle of maximum en-
tropy (POME) using the Monte Carlo simulated 
data, and compared it to the methods of moments 
(MOM), ML, and the probability weighted moments 
(PWM). They concluded that POME yielded the 
least parameter bias for all sample sizes. Other pa-
rameter estimation problems for the log-logistic dis-
tribution are addressed by, among others, Kantam 
and Srinivasa (2002), Balakrishnan et al. (1987), 
and Tiku and Suresh (1992). The log-logistic distri-
bution is a special type of a Burr-type XII distribu-
tion. Burr (1942) introduced twelve different forms 
of cumulative distribution functions for modelling 
data, of which Burr-type X and Burr-type XII re-
ceived the maximum attention. There is also a thor-
ough analysis of Burr-type XII distribution in Rodri-
guez (1977), and see also Wingo (1993). Burr-type 
distributions are very flexible and can be adapted to 
fit many situations. In this paper the three-parameter 
log-logistic distribution from the Burr-type XII family 
is used. The normal is one of the most commonly 
used distributions where there is a large data set. 
Log-normal is one of the distributions commonly 
mentioned in the literature on emissions; the vari-
ance of the log-normal increases with the mean. The 
three-parameter Weibull distribution is also one of 
the commonly used reported distributions, and it is 
also heavy-tailed.  

3. Research methodology 
This section describes the statistical distribution used 
to describe the SO2 emissions data and the method 
of estimating the parameters. The log-logistic distri-
bution is a continuous probability distribution for a 
non-negative random variable. It is the probability 
distribution of a random variable whose logarithm 
has a logistic distribution. It is generated by a trans-
formation of logistic variable, just like the log-normal 
distribution is obtained from the normal distribution. 
It is similar in shape to the log-normal distribu-
tion but has heavier tails. The log-logistic distribu-
tion is a special case of the Burr-type XII distribution 
(Burr, 1942) and also a special case of the Kappa 
distribution (Mielke & Johnson, 1973). The Burr dis-
tribution is very relevant in the study of atmospheric 
emissions, it is more flexible and has heavier tails 
and is then able to model extreme emissions. 
Its cumulative distribution function can be written 
in closed form, unlike that of the log-normal. The 
3LL distribution has a probability density function 
given as in Equation 1. 
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and a cumulative distribution given by Equation 2: 
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where 𝛽𝛽 > 0 is a scale parameter, 𝛼𝛼 > 0 is a shape 
parameter and 𝛾𝛾 ∈ 𝑅𝑅 is a location parameter. The 
distribution is unimodal when the shape parameter 
𝛼𝛼 > 1 and its dispersion decreases as the shape pa-
rameter 𝛼𝛼 increases. 

The mean and variance of the 3LL distribution 
are given by Equations 3 and 4 respectively: 
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 3.1 Parameter estimation  
The parameters are estimated using the ML method. 
The ML is asymptotically normal, has the smallest 
asymptotic variance, and is asymptotically efficient 
and optimal. With the ML approach, the distribu-
tions of the estimators become more and more con-
centrated near the true value of the parameter being 
estimated as the sample size (n) increases.  
 
Maximum likelihood method: The probability 
density function of the 3LL distribution is given in 
Equation (1) above, with the log likelihood given in 
Equation 5: 
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where 𝑛𝑛 is the sample size. Taking the partial deriv-
atives of each parameter gives Equations 6–8: 
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The maximum likelihood estimates 𝛼𝛼�, �̂�𝛽 and 𝛾𝛾� 
are obtained by setting each of the above equations 
to zero and solving them simultaneously. Optimisa-
tion computer algorithms such as the Newton-
Raphson, Nelder-Mead, and simulated annealing 
are often used to arrive at the estimates. The normal, 
log-normal and three-parameter Weibull distribu-
tion parameters are estimated in a similar way.   
 

3.2. Goodness of fit tests 
The Anderson-Darling, Chi Squared, and Kolmogo-
rov-Smirnov tests are used to test if the 3LL is a good 
distribution to fit the data. The probability density 
function (PDF) plots, cumulative distribution func-
tion (CDF) plots, together with the probability-prob-
ability (P-P) and quantile-quantile (Q-Q) plots are 
also used as tests.  

The Kolmogorov-Smirnov test is a nonparamet-
ric test for the equality of continuous, one-dimen-
sional probability or statistical distributions that can 
be used to compare a sample of observations with a 
reference probability distribution or to compare two 
samples. It tries to determine if two data sets differ 
significantly, and has the advantage of making no 
assumption about the statistical distribution of data. 
It quantifies a distance between the empirical distri-
bution function of the sample and the theoretical cu-
mulative distribution function, or between the em-
pirical distribution functions of two samples. The test 
statistic of the Kolmogorov Smirnov is given by 
Equation 9:  

𝐷𝐷𝑛𝑛 = 𝑚𝑚𝑉𝑉𝑥𝑥 �𝑚𝑚𝑉𝑉𝑥𝑥𝑖𝑖=1….𝑛𝑛 �
1
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− 𝐹𝐹�(𝑥𝑥𝑖𝑖)�  ;𝑚𝑚𝑉𝑉𝑥𝑥𝑖𝑖=1….𝑛𝑛  �𝐹𝐹�(𝑥𝑥𝑖𝑖)−

𝑖𝑖−1
𝑛𝑛
��  

 (9) 

which is the largest vertical difference between the 
theoretical and empirical CDF for all values of 𝑥𝑥 (Ev-
ans et al., 2008), where 𝑛𝑛 is the sample size. 

The Anderson Darling test is also a statistical test 
of whether a given sample of data is drawn from a 
given probability distribution. It is a modification of 
the Kolmogorov-Smirnov test and gives more 
weight to the tails of a statistical distribution than that 
test. In its basic form, the test does not assume a par-
ticular parametric form of the distribution being 
tested, in which case the test and its set of critical 
values is distribution free. The test is, however, most 
often used in context where a family of distributions 
is being tested, in which case the parameters of that 
family need to be estimated and account must be 
taken of this in adjusting either the test-statistic or its 
critical values. When applied to testing if a normal 
distribution adequately describes a set of data, it is 
one of the most powerful statistical tools for detect-
ing most departures from normality.  

The test assesses whether a sample comes from 
a specified distribution. It compares the observed 

CDF with the expected CDF and is defined in Equa-
tion 10: 
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with the computational formula given by Equation 
11: 
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where 𝑛𝑛 is the sample size. According to Abbas et al. 
(2012), the Anderson-Darling test is superior where 
there is greater concern for the extreme values in the 
data. This is very relevant when considering atmos-
pheric emissions data.  

The P-P and Q-Q plots are graphical methods 
used to test the fit of the distributions to the data. 
The P-P plot assesses whether or not the data set 
follows the specified distribution. The P-P plot com-
pares the CDF of the distributions by plotting the 
theoretical values and the points of the empirical dis-
tribution against it. The Q-Q plot compares the dis-
tributions by plotting their quantiles against each 
other. With the Q-Q plot, the data are plotted 
against the theoretical distribution. For both the P-P 
and Q-Q plots, if the empirical distribution is close 
to the theoretical distribution, the graph will be a 
straight line (Beirlant et al., 2004). Departures from 
the straight line indicate the departures from the the-
oretical distribution.  

4. Results and discussions  
The data is from Eskom, for the period January 
2005 to January 2012.The efficiency of the power 
station cannot be determined by absolute emissions, 
but by the amount of SO2 emitted in kilograms per 
gigawatt hours (kg/GWh) of electricity sent out (rel-
ative emissions). To accommodate the non-station-
arity in the data, the total emissions of SO2 emitted 
(in kilograms or milligrams) per month per power 
station is divided by the total amount of units of 
power sent out per power station per month or by 
the volume. The derived data for the power stations, 
therefore, represents the amount of emission emit-
ted in kilograms to send out one unit of power in 
gigawatt hours or in milligrams per cubic nano metre 
(mg/Nm3). The resultant variables are a measure of 
efficiency of the station in emitting SO2 and will be 
used for the analysis.  

Time plots are useful for checking obvious pat-
terns in the data. The plots represent evolving effi-
ciency at the power stations. Time plots of Lethabo 
and Camden power stations’ SO2 kg/GWh and SO2 
mg/Nm3 data are given in Figures 1 and 2 respec-
tively. The rest of the time plots are given in supple-
mentary information. 
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Figure 1: Monthly SO2 in kg/GWh emissions, where (a) = Lethabo and (b) = Camden. 

  

Figure 2: Monthly SO2 in mg/Nm3 emissions, where (a) = Lethabo and (b) = Camden. 

 

Table 1: Descriptive statistics of SO2 in kg/GWh. 

Station  Mean SO2 

(kg/GWh) 
Standard devia-

tion SO2 
(kg/GWh) 

Skewness SO2 
(kg/GWh) 

Kurtosis SO2 
(kg/GWh) 

Arnot 6 270.2 862.76 0.2815 1.3013 
Camden 9 162.7 1625.80 -0.4128 0.9573 
Duhva 8 572.0 1325.60 0.8272 2.1535 
Grootvlei 8 122.3 1791.90 -0.4895 0.9706 
Hendrina 8 565.6 1577.10 0.8250 0.0876 
Kendal  8 972.5 1388.90 -1.7983 13.7830 
Komati 7 031.5 1996.80 -0.2294 2.5996 
Kriel 6513.7 746.55 0.6170 0.0591 
Lethabo 8468.5 1248.80 2.1048 4.6931 
Majuba 8125.6 1247.00 0.6481 0.7672 
Matimba 10807 787.27 0.1678 0.3873 
Matla 8665.2 10488.00 0.6109 5.4594 
Tutuka 8790.1 860.30 -0.0552 0.0927 
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Arnot, Komati, and Kriel have average monthly 
SO2 emissions of around 6000 kg/GWh; Duhva, 
Grootvlei, Hendrina, Hendrina, Lethabo, Majuba, 
Matimba, Matla and Tutuka average 8000 kg/GWh; 
and Camden, Kandal and Matimba average emis-
sion around 9000 kg/GWh.  

For SO2 in mg/Nm3 most power stations (Cam-
den, Duhva, Hendrina, Kendal, Lethabo, Majuba, 
Matla and Tutuka) have an average monthly emis-
sion of 2000, and Arnot, Grootvlei, Komati and Kriel 
1600. Graphs for Lethabo and Camden are given in 
Figure 2, the remainder in the supplementary infor-
mation. Matimba had the highest monthly average 
of 3000 mg/Nm3. Matimba received the 2011 Na-
tional Association of Clean Air award for consistent 

reduction of point source particulate emission 
(COPFIT Fact Sheet, Eskom, 2012), but it seems not 
to be the case for SO2 emissions. An augmented 
Dickey-Fuller test for stationarity was carried out for 
all of the stations for both SO2 in kg/GWh and SO2 
in mg/Nm3 at 5% significance level, showing that all 
stations were stationary, that none of the stations 
had a trend.  

Table 1 gives the descriptive statistics of the 
power stations for SO2 in kg/GWh, and Table 2 gives 
the statistics for SO2 in mg/Nm3. Figures 3 and 4 give 
graphical plots of the monthly means for each sta-
tion for both SO2 in kg/GWh and SO2 in mg/Nm3 
from the worst to the better emitters. 

 
 

Table 2: Descriptive statistics of SO2 in mg/Nm3. 

Station  Mean SO2 

(mg/Nm3) 
Standard deviation 

SO2 (mg/Nm3) 
Skewness SO2 

(mg/Nm3) 
Kurtosis SO2 

(mg/Nm3) 
Arnot 1634.2 181.70 -0.7008 2.0968 
Camden 1912.3 535.06 0.4380 1.2521 
Duhva 2292.0 347.54 0.4444 2.4256 
Grootvlei 1880.6 316.99 -0.1991 -0.1948 
Hendrina 2018.1 317.94 1.0537 0.5400 
Kendal  2388.5 371.78 1.8954 3.9019 
Komati 2335.0 234.96 0.2570 -0.2139 
Kriel 1623.3 263.42 1.4775 3.5454 
Lethabo 1654.9 210.38 0.4208 -0.5615 
Majuba 2033.4 249.95 0.6445 0.3236 
Matimba 3165.4 296.94 -0.5155 0.2562 
Matla 2302.8 313.61 1.0767 5.7380 
Tutuka 2325.0 187.36 0.1694 -0.2861 

 

Figure 3: SO2 in kg/GWh monthly means in an ascending order of efficiency. 
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Figure 4: The SO2 in mg/Nm3 monthly means in an ascending order of efficiency. 

Table 3: Abatement technology used in Eskom power stations (Eskom, 2012). 

 Power station Abatement technology 
Arnot  Fabric filter plants 
Camden  Fabric filter plants 
Duhva Unit 1 – 3  Fabric filter plants 
Duhva Unit 4 – 6   Electrostatic precipitators and flue gas conditioning 
Grootvlei Units 1, 5, 6 Fabric filter plants 
Grootvlei Units 2, 3, 4   Electrostatic precipitators and flue gas conditioning 
Hendrina  Fabric filter plants 
Kendal  Electrostatic precipitators and flue gas conditioning 
Komati  Electrostatic precipitators and flue gas conditioning 
Kriel  Electrostatic precipitators and flue gas conditioning 
Lethabo  Electrostatic precipitators and flue gas conditioning 
Majuba s Fabric filter plant 
Matimba  Electrostatic precipitators and flue gas conditioning 
Matla  Electrostatic precipitators and flue gas conditioning 
Tutuka  Electrostatic precipitators 

 

From Figures 3 and 4 it can be concluded that 
Matimba and Kendal are the least efficient stations 
in emitting SO2, with Arnot and Kriel the most effi-
cient.  

Eskom installed abatement technologies at each 
power station to reduce the ash emissions. These 
technologies are said to have an efficiency of at 
99%, and over 99.9% in many cases (COPFIT Fact 
Sheet, Eskom, 2012). These abatement technolo-
gies are given in Table 3. 

From Figures 3 and 4 in conjunction with Table 
3, it can be concluded that the stations that use an 
electrostatic precipitators and flue gas conditioning 
technology are less efficient than the ones using fab-
ric filter plants, but other factors also affect emission 
efficiency, including the age of the plant and the 
quality of coal used. 

To further describe the distribution of the data 
we look at skewness and kurtosis of the data. The 
skewness is defined by Equation 12: 

𝑠𝑠 = 𝐸𝐸(𝑥𝑥−𝜇𝜇)3

𝜎𝜎3
  (12) 

where μ and 𝜎𝜎 are the mean and standard deviation 
of emission efficiency variable 𝑥𝑥. The skewness 
shows how symmetric the data is around the mean. 
A symmetric data has skewness near zero, while 
negative skewness indicates that the data is spread 
more to the left of the mean and positive skewness 
indicates that the data is spread to the right of the 
mean. By negative-skewed, the left tail is long rela-
tive to the right tail, and by positive-skewed the right 
tail is long relative to the left. For SO2 in kg/GWh, 
Camden, Grootvlei¸ Kendal, Komati and Tutuka 
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have a negative skewness, indicating that their data 
is more spread to the left of the mean. For the rest 
of the stations the data is more spread to the right of 
the mean. For SO2 in mg/Nm3, Arnot, Grootvlei, and 
Matimba have a negative skew, and all the other sta-
tions have a positive skew. Only Grootvlei is con-
firmed with a negative skewness in both data sets.  

The kurtosis is defined by Equation 13: 

𝑘𝑘 = 𝐸𝐸(𝑥𝑥−𝜇𝜇)4

𝜎𝜎4
  (13) 

where μ and 𝜎𝜎 are the mean and standard deviation 
of 𝑥𝑥. Kurtosis is a measure of whether the data sets 
are heavy- or light-tailed relative to the normal dis-
tribution. That is, data sets with high kurtosis tend to 
have heavy tails, or outliers. Data sets with low kur-
tosis tend to have light tails, or a lack of outliers. If a 

distribution has a kurtosis less than three, its tail is 
shorter and thinner and its peak is flatter and 
broader than the normal distribution (Brown 2011). 
For SO2 in kg/GWh, only Kendal, Lethabo and 
Matla have a kurtosis higher than three, indicating 
that they have a central peak higher and sharper and 
that their tails are longer and fatter than that of nor-
mal distribution. All the other stations have a tail 
shorter and thinner and their peaks are flatter and 
broader than the normal distribution.  

Since most stations are positively skewed for 
both SO2 in kg/GWh and SO2 in mg/Nm3, a right-
skewed distribution needs to be considered, indicat-
ing that it could be reasonable to fit a 3LL distribu-
tion to the data. Tables 4 and 5 give the parameter 
estimates of the 3LL distribution for both the SO2 in 
kg/GWh and SO2 in mg/Nm3. The parameters are 
estimated using the ML estimation method.  

 

Table 4: Parameter estimates of SO2 kg/GWh using 3LL distribution. 

Station   SO2 kg/GWh  
Arnot 𝛼𝛼 = 35.53 𝛽𝛽 = 18 237  𝛾𝛾 = −11 983.2 
Camden 𝛼𝛼 = 1.47𝐸𝐸 + 8  𝛽𝛽 = 1.31𝐸𝐸 + 11 𝛾𝛾 = −1.31𝐸𝐸 + 11 
Duhva 𝛼𝛼 = 9.5008   𝛽𝛽 = 6 768.2 𝛾𝛾 = 1 688.4 
Grootvlei 𝛼𝛼 = 5.54𝐸𝐸 + 7 𝛽𝛽 = 5.44𝐸𝐸 + 10 𝛾𝛾 = −5.44𝐸𝐸 + 1 
Hendrina 𝛼𝛼 = 4.0839  𝛽𝛽 = 3 381.8 𝛾𝛾 = 4 873.9 
Kendal 𝛼𝛼 = 1.30𝐸𝐸 + 8  𝛽𝛽 = 8.56𝐸𝐸 + 10 𝛾𝛾 = −8.56𝐸𝐸 + 10 
Komati 𝛼𝛼 = 1.58𝐸𝐸 + 6  𝛽𝛽 = 1.63𝐸𝐸 + 9 𝛾𝛾 = −1.63𝐸𝐸 + 9 
Kriel 𝛼𝛼 = 1.47𝐸𝐸 + 8   𝛽𝛽 = 1.31𝐸𝐸 + 11 𝛾𝛾 = −1.31𝐸𝐸 + 11 
Lethabo  𝛼𝛼 = 1.7336   𝛽𝛽 = 710.39 𝛾𝛾 = 7 315.9 
Majuba 𝛼𝛼 = 7.8949   𝛽𝛽 = 5450.9 𝛾𝛾 = 2555.3 
Matimba 𝛼𝛼 = 20.096   𝛽𝛽 = 8794.0 𝛾𝛾 = 1972.8 
Matla 𝛼𝛼 = 36.565   𝛽𝛽 = 1 911.0 𝛾𝛾 = −11 273.0 
Tutuka 𝛼𝛼 = 6.78𝐸𝐸 + 7  𝛽𝛽 = 3.33𝐸𝐸 + 10 𝛾𝛾 = −3.33𝐸𝐸 + 10 

 

Table 5: Parameter estimates of SO2 mg/Nm3 using 3LL distribution. 

Station   SO2 kg/GWh  
Arnot 𝛼𝛼 = 1.59𝐸𝐸 + 8  𝛽𝛽 = 1.54𝐸𝐸 + 8 𝛾𝛾 = −1.54𝐸𝐸 + 10 
Camden 𝛼𝛼 = 56.437  𝛽𝛽 = 16128 𝛾𝛾 = 14216.0 
Duhva 𝛼𝛼 = 22.921  𝛽𝛽 = 4283.4 𝛾𝛾 = −2006.4 
Grootvlei 𝛼𝛼 = 2.08𝐸𝐸 + 8  𝛽𝛽 = 3.72𝐸𝐸 + 10 𝛾𝛾 = −3.72𝐸𝐸 + 10 
Hendrina 𝛼𝛼 = 3.8  𝛽𝛽 = 592.72 𝛾𝛾 = 1354.7 
Kendal 𝛼𝛼 = 12.997  𝛽𝛽 = 1755.2 𝛾𝛾 = 565.36 
Komati 𝛼𝛼 = 4.0893  𝛽𝛽 = 525.86 𝛾𝛾 = 1050.1 
Kriel 𝛼𝛼 = 5.215  𝛽𝛽 = 632.8 𝛾𝛾 = 993.04 
Lethabo  𝛼𝛼 = 2.193  𝛽𝛽 = 317.12 𝛾𝛾 = 1 956.7 
Majuba 𝛼𝛼 = 6.054  𝛽𝛽 = 835.69 𝛾𝛾 = 1166.6 
Matimba 𝛼𝛼 = 3.9𝐸𝐸 + 8  𝛽𝛽 = 6.47𝐸𝐸 + 10 𝛾𝛾 = −6.47𝐸𝐸 + 10 
Matla 𝛼𝛼 = 16.875  𝛽𝛽 = 2689.4 𝛾𝛾 = −404.36 
Tutuka 𝛼𝛼 = 14.396  𝛽𝛽 = 154.2 𝛾𝛾 = 770.18 
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The normal, log-normal and three-parameter 
Weibull distributions were also fitted to the data for 
comparisons. Figure 4 shows the fit to the Lethabo 
station, with the comparisons for the distributions.  

Probability-probability and quantile-quan-
tile plots: The P-P and Q-Q plots are graphical 

methods used to test the fit of the distributions to the 
data. Departures from the straight line indicates de-
partures from the theoretical distribution. Figure 5 
(split over this page and the next) gives the PDF, 
CDF, P-P and Q-Q plots of Lethabo station for both 
SO2 kg/GWh and SO2 mg/Nm3.
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Figure 5: Distribution fit to the SO2 kg/GWh and SO2 Nm3 for Lethabo station. 

The PDF, CDF together with the P-P and Q-Q 
plots shows a better fit for the log-logistic compared 
to the other distributions. Looking at the Q-Q plots 
it can be observed that the quantiles of 3LL and the 
three-parameter Weibull are closer to the straight 
line compared to the normal and the log-normal dis-
tributions. A goodness of fit is also done on the sta-
tions. To test for the goodness of fit, the Kolmogo-
rov-Smirnov and Anderson-Darling tests are 
considered, and the results for these are given here. 
The Kolmogorov-Smirnov critical value at 0.05 and 
0.01 level of significance for Arnot, Duhva, Hen-
drina, Kendal, Kriel, Lethabo, Majuba, Matimba, 
Matla and Tutuka are 0.14355 and 0.17223 respec-

tively, and for Camden its 0.15755 and 0.18903. 
For Grootvlei and Komati, since their emissions 
were recorded from April 2009, the critical values 
are 0.22119 and 0.2632 respectively. The Ander-
son-Darling critical values at 0.05 and 0.01 signifi-
cance level are 2.5018 and 3.9074 respectively. The 
null and alternative hypotheses are given as:  
• 𝐻𝐻0: The data follows the three-parameter log-lo-

gistic distribution. 
• 𝐻𝐻𝑎𝑎: The data do not follow the three-parameter 

log-logistic distribution. 
 

Table 6 gives the Kolmogorov-Smirnov and Ander-
son-Darling test results for each station. 
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Table 6: Anderson-Darling and Kolmogorov-Smirnov test results (3LL). 

  SO2 kg/GWh SO2 mg/Nm3 

  Statistic p-value  Reject?  Statistic p-value  Reject?  

Arnot AD 0.2861  No 0.2336  No 

KS 0.0592 0.9000 No 0.0486 0.9801 No 

Camden AD 3.1772  No 0.2885  No 

KS 0.0743 0.7938 No 0.0599 0.9449 No 

Duhva AD 0.2163  No 0.2019  No 

KS 0.0584 0.9146 No 0.0507 0.9707 No 

Grootvlei AD 0.2223  No 0.4312  No 

KS 0.0782 0.9678 No 0.1172 0.6631 No 

Hendrina AD 0.2709  No 0.6082  No 

KS 0.0679 0.7924 No 0.0840 0.5436 No 

Kendal AD 0.82056  No 0.5138  No 

KS 0.0782 0.6330 No 0.0792 0.6178 No 

Komati AD 0.2556  No 0.2169  No 

KS 0.0753 0.9773 No 0.0827 0.9494 No 

Kriel AD 0.3206  No 0.6006  No 

KS 0.0637 0.8492 No 0.0725 0.7228 No 

Lethabo AD 0.4868  No 0.7281  No 

KS 0.0641 0.8443 No 0.0962 0.3733 No 

Majuba AD 0.4052  No 0.2672  No 

KS 0.0777 0.6413 No 0.0535 0.9751 No 

Matimba AD 0.2354  No 1.0090  No 

KS 0.0458 0.9894 No 0.0901 0.4543 No 

Matla AD 0.7477  No 0.2802  No 

KS 0.0724 0.7245 No 0.0552 0.9401 No 

Tutuka AD 0.3725  No 0.2674  No 

KS 0.0616 0.8754 No 0.0596 0.8983 No 
 
Both the Anderson-Darling and Kolmogorov-

Smirnov tests do not reject the null hypothesis for 
any of the stations for both SO2 kg/GWh and SO2 
mg/Nm3 at 5% and 1% significance level. Supple-
mentary information gives the QQ plots for all the 
other stations. Tables 7 and 8 give the probabilities 
of exceedances above a given threshold, where 𝑡𝑡 is 
the threshold and 𝑃𝑃(𝑋𝑋 > 𝑡𝑡) is the probability of the 
exceedances. 

Tables 7 and 8 show that Grootvlei, Kendal and 
Komati have a probability of almost zero for exceed-
ing 5000 kg/GWh SO2 emission level per month, 
with Arnot, Grootvlei Majuba having a probability of 
almost zero for exceeding 1000 mg/Nm3 SO2 em-
mission level per month. Matimba, Lethabo and 
Matla have a probability of 1 for exceeding 7000 
kg/GWh SO2 emmission level per month with Matla, 

Tutuka and Duhva have a probability of 1 for ex-
ceeding 2000 mg/Nm3 SO2 emmissions per month. 
This confirms that the least efficient stations with re-
gard to emission of SO2 are Matimba, Lethabo and 
Matla. 

Conclusions  
Monthly SO2 emissions in kg/GWh and in mg/Nm3 
have been considered for Eskom’s 13 coal-fired 
power-generating stations. The 3LL fits the data of 
these stations best, and makes it is possible to quan-
tify (in terms of a statistical distribution). This quan-
tification helps to monitor and manage the SO2 
emissions effectively. 

The parameters of the log-logistic distribution are 
estimated by the ML method. Kolmogorov-Smirnov 
and Anderson-Darling tests are used to test for the 
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goodness of fit of the 3LL distribution for the 13 sta-
tions. The PDF, CDF, P-P and Q-Q plots are used 
to show how well the distribution fits the data. 

Considering Figures 3 and 4 together with Table 
4, it can be concluded that the stations that use elec-

trostatic precipitators and flue gas conditioning tech-
nology are less efficient than those using fabric filter 
plants technology, although other factors, such as 
the age of the plant and the quality of coal used af-
fect emission efficiency. 

 
Table 7: The SO2 in kg/GWh probabilities of exceedances for each station (3LL). 

  𝑡𝑡 = 5000 𝑡𝑡 = 6000 𝑡𝑡 = 7000 𝑡𝑡 = 8000 𝑡𝑡 = 10000 
Arnot 𝑃𝑃(𝑋𝑋 > 𝑡𝑡)  0.9396 0.6319 0.1759 0.0287 0.0007 

Camden 𝑃𝑃(𝑋𝑋 > 𝑡𝑡) 0.0059 0.0021 0.0008 0.0003 0.00004 

Duhva 𝑃𝑃(𝑋𝑋 > 𝑡𝑡) 0.9999 0.9864 0.9091 0.6601 0.1244 

Grootvlei 𝑃𝑃(𝑋𝑋 > 𝑡𝑡) 0.0061 0.0022 0.0008 0.0003 ≈ 0 

Hendrina 𝑃𝑃(𝑋𝑋 > 𝑡𝑡) 1.0000 0.9889 0.8694 0.5796 0.1546 

Kendal 𝑃𝑃(𝑋𝑋 > 𝑡𝑡) 0.0005 0.0001 0.0000 ≈ 0 ≈ 0 

Komati 𝑃𝑃(𝑋𝑋 > 𝑡𝑡) 0.0078 0.0030 0.0011 0.0004 ≈ 0 

Kriel 𝑃𝑃(𝑋𝑋 > 𝑡𝑡) 0.9942 0.7477 0.2144 0.0478 0.0046 

Lethabo 𝑃𝑃(𝑋𝑋 > 𝑡𝑡) ≈ 1 ≈ 1 ≈ 1 0.5163 0.0908 

Majuba 𝑃𝑃(𝑋𝑋 > 𝑡𝑡) 0.9983 0.9740 0.8336 0.5023 0.0786 

Matimba 𝑃𝑃(𝑋𝑋 > 𝑡𝑡) 1.0000 1.0000 1.0000 0.9995 0.8622 

Matla 𝑃𝑃(𝑋𝑋 > 𝑡𝑡) 0.9994 0.9945 0.9585 0.7669 0.0817 

Tutuka 𝑃𝑃(𝑋𝑋 > 𝑡𝑡) ≈ 0 ≈ 0 ≈ 0 ≈ 0 ≈ 0 
 

Table 8: SO2 in mg/Nm3 probabilities of exceedances for each station (3LL). 

  𝑡𝑡 = 1000 𝑡𝑡 = 1500 𝑡𝑡 = 2000 𝑡𝑡 = 2500 𝑡𝑡 = 3000 
Arnot 𝑃𝑃(𝑋𝑋 > 𝑡𝑡) 0.0000 0.0000 0.0000 0.0000 0.0000 

Camden 𝑃𝑃(𝑋𝑋 > 𝑡𝑡) 0.2459 0.1570 0.0961 0.0753 0.0335 

Duhva 𝑃𝑃(𝑋𝑋 > 𝑡𝑡) 1.0000 1.0000 1.0000 ≈ 1 0.0273 

Grootvlei 𝑃𝑃(𝑋𝑋 > 𝑡𝑡) 0.0037 0.0003 ≈ 0 ≈ 0 ≈ 0 

Hendrina 𝑃𝑃(𝑋𝑋 > 𝑡𝑡) ≈ 1 0.9952 0.4200 0.0756 0.0202 

Kendal 𝑃𝑃(𝑋𝑋 > 𝑡𝑡) 1.0000 ≈ 1 0.9322 0.2201 0.0140 

Komati 𝑃𝑃(𝑋𝑋 > 𝑡𝑡) 1.0000 0.6543 0.0818 0.0156 0.0047 

Kriel 𝑃𝑃(𝑋𝑋 > 𝑡𝑡) 0.0000 0.0000 0.0000 0.0000 0.0000 

Lethabo 𝑃𝑃(𝑋𝑋 > 𝑡𝑡) ≈ 1 1.0000 0.9875 0.2349 0.0684 

Majuba 𝑃𝑃(𝑋𝑋 > 𝑡𝑡) 0.0000 0.0000 0.0000 0.0000 0.0085 

Matimba 𝑃𝑃(𝑋𝑋 > 𝑡𝑡) 0.0024 0.0001 ≈ 0 ≈ 0 ≈ 0 

Matla 𝑃𝑃(𝑋𝑋 > 𝑡𝑡) 1.0000 0.9971 0.8688 0.2146 0.0184 

Tutuka 𝑃𝑃(𝑋𝑋 > 𝑡𝑡) 1.0000 ≈ 1 0.9633 0.1620 0.0050 
 
Tables 7 and 8 show Arnot, Grootvlei and Kriel 

as the most efficient stations and Matimba, Lethabo 
and Matla as the least efficient. Looking at the results 
of the goodness fit, at both 5% and 1%, the null hy-
pothesis for all stations for both the SO2 in kg/GWh 
and in mg/Nm3 cannot be rejected and it is therefore 
concluded that the data follows the 3LL distribution. 
The calculated probabilities can be used to estimate 
costs of exceeding the given limits.  

The goodness of fit tests considered show that 
the 3LL fits the data of the Duhva, Hendrina, Ken-
dal, Komati, Kriel, Lethabo and Matimba better than 
other stations. For SO2 in mg/Nm3, the three-param-
eter log-logistic fits the data of Camden, Duhva, 
Hendrina, Komati, Kriel, and Lethabo best. From 
the results it shows that three-parameter log-logistic 
fits the positively skewed data better than the nega-
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tively skewed data. For the negatively skewed sta-
tions, it is only the three-parameter Weibull distribu-
tion that does better than the 3LL distribution. The 
three-parameter Weibull distribution is very close to 
the 3LL distribution in terms of goodness of fit. In 
emissions monitoring, however, concerns are more 
with high emissions (positively skewed), which give 
rise to undesirable consequences. 

Reporting on environmental performance has 
several benefits, including providing management 
information to help exploit the cost savings that 
good environmental performance usually brings 
and, giving Eskom the opportunity to set out what 
they believe is significant in their environmental per-
formance. 

Further research will be done on the other Burr-
type distributions to see if they will fit the data of 
most stations similar or better than the 3LL. The im-
pact of the age of the plant and the quality of the 
coal used on atmospheric emission efficiency also 
requires research.  
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