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Abstract

The aim of this paper is fo determine if a Generalised Linear Model (GLM) is a better model over the traditionai
simple linear regression when fitted to nitrogen dioxide (NOZ) emitted into the atmosphere during the production ot
electricity from 13 Eskoms coal fuelled power stations. GLMs have flexibilities of allowing the variance to vary as a
function of the mean (non-constant variance), and have the advantage of keeping the data in its original scale. Unlike
regression, the models do not assume a linear relationship between the response variable and the explanatory variables,
and instead the link function is used. The data also need not be Normally distributed. Group-lasso interaction network
(glinternet) was used in variable selection for the GLM models. A similar model using regression analysis was fitted for
comparison. The results show that a GLM can be used to predict and explain NO2 emissions from coal fired electricity
stations in South Africa. The Lognormal model was found to be the better model by diagnostic measures including
plots that showed improved variance behavior in the residuals. Various variables such as amount of electricity sent out
(in GWhs), age of power station (in vears), power station used, and interaction terms such as electricity and station,
Age and station can be used in describing and predicting NOz2 emissions (in fons) from Eskoms coal fuelled power

stations.
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Introduction

Coal is the primary source of energy in South Africa
and its use has increased significantly over the years.
This is as a result of an increased demand of
electricity in South Africa. This has given rise to more
emission of pollutants including nitrogen dioxide (NO2)
from the coal fired electricity power stations (Eskom,
2016). Exposure to this emission impacts on human
health (Anand, Varma and Srimurali, 2013; World
Health Organization, 2013; Wellenius, Schwartz and
Mittleman, 2015). In order to control NO2, and
sulphur dioxide (SO2) emissions and other pollutants
from the electricity industry, minimum emission
standards were published in terms of the National
Environmental Management: Air Quality Act in 2010,
requiring Eskom to install many retrofits of abatement
technologies in order to comply with the emission
standards (Eskom, 2011).

The selection of the right statistical probability
distribution for describing or modelling environmental
pollution data is an important step. These probability
models have become the basis for quantifying
emissions to meet the evolving information needs of
environmental quality management (Singh et al,
2001).

Georgopoulos and Seinfeld (1982) concluded that air
pollutant  concentrations are inherently random
variables because of their dependence on the
fluctuations of a wvariety of meteorological and
emission variables. They also concluded that there is
no single statistical distribution which gives the best
fit to air quality/emission at all time periods. The
choice of a statistical distribution generally depends
on the pollutant, the time period of interest, the
average time of the data, the location and other
factors.

Popular statistical probability density functions in
representing atmospheric concentrations emissions
include the two-parameter distributions (namely, the
Lognormal, the Weibull and the Gamma), three-
parameter distributions (namely, the 3 parameter
Lognormal, the 3 parameter Gamma, the 3 parameter
Weibull and 3 parameter Beta distributions) and four-
parameter distributions (e.g. four parameter Beta
distribution) (Georgopoulos and Seinfeld, 1982). The
distributions are useful because of their property of
being right skewed, allowing for the modelling of
higher emissions.

Statement of the problem

The aim of this study is to determine if Generalised
Linear Models (GLMs) have an advantage or give a
better model fit than the traditional linear regression
model when fitted to the NO2 emission data. The
study also aims to determine those variables
contributing  significantly to the amount of NO2
emitted into the atmosphere during the production of
electricity from 13 Eskoms coal fuelled power stations.

dJustification of the study

The identification of input variables that contribute to
the NOz2 emission is important to combat and monitor
high emission volumes into the atmosphere in order
to find ways to decrease such emissions and meet
statutory regulations and lower the risk associated with
electricity production emissions. The flexibilities of
GLMs, compared to models based on regression
analysis, can be useful in the determination of these
input variables. This flexibility includes advantages of
allowing the variance to vary as a function of the
mean (non-constant variance), and the response
variables having a distribution other than the Normal
distribution. Also, GLMs provide the advantage of
keeping the data to its original scale by making use
of link functions. In the South African context, there
is not sufficient literature to suggest a wide use of
GLMs in the modelling of emission, especially the
NO2 pollutant. The study will try to reduce this gap.
Objectives of the study

In this study, the objectives are:

To check if the Lognormal distribution based
GLM is a better model over the traditional simple
linear regression (the Normal distribution based GLM
with identity link function) when fitted on the response
NO2 emission data.

Determining if the variables electricity sent
out (GWhs), age of power station (years), power
station, abatement technology and month can be used
to predict the emission of NOz2 (tons).

To rank the Eskom power plants in terms
of NOz2 emission efficiency.

Contribution of the study

With the aging of the power stations and high
demand of electricity, NO2 emissions are projected to
increase from coal fired electricity stations in South
Africa (Pretorius et al., 2015). There is therefore a
need to model NO2 emissions from these stations.
This will provide information to monitor and manage
emissions to meet the regulations and thus minimise
the exposure of high emissions to humans and the
environment.

The rest of the paper is organised as follows, section
2 gives the Literature review. Section 3 gives the
methodology. Section 4 gives the results and section
5 concludes.

Literature review

This section reviews some of the literature, including
models used in modelling emissions.

Perez and Trier (2001) used predictions to compare
linear regression and multilayer neural networks to
find a method of predicting NO and NO2
concentrations. A feed forward neural network was
chosen as the convenient method of prediction over
the linear regression since this method had reasonable
control over the adjustment of parameters.

In studies by Nagendra and Khare (2006), Perez and
Trier (2001) and many others, such as those by
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Kukkonen et al. (2003) and Capilla (2014), there was
a strong non-linear dependency between NO2
emissions (concentrations) and the selected input
variables. Simple linear models, multiple regression
models, feed-forward multilayer perceptron networks
etc. were compared in modelling NO2 concentrations.
Pollutant concentrations rarely follow a Normal
distribution. NO2 is no different from the other
pollutants, but it can also be modelled using the
statistical distributions from the flexible exponential
family distribution and it also shares the statistical
characteristics found in other pollutants. The
exponential family distributions give the much needed
flexibility in the construction of such models (Nelder
and Wedderburn, 1972).

The GLM model is used to model NO2 emissions at
Eskoms coal fueled power plants in this study.

Methodology

The linear regression and the GLM models are
discussed in this section.

Linear regression

This section focuses on models to be used in
regression under the Normality assumption of the
response variable NOz2. This assumption implies that
the emission data is symmetric.

The following model will be fitted on the NO2
emission data initially. Analysis of Covariance
(ANCOVA) is applicable, since the explanatory
variables are both continuous and categorical and the
response variable is continuous.

Ypqt = Bo + BiXpqr + B2Ager +v¥p + ag + T+ pge (1)
where,

Ypqt is the response variable (NO2 emitted
in tons by plant p with abatement filter q and at time
t (in years))

o is the intercept

B1 is the coefficient of the electricity sent
out in Gigawatt-hours

[B2 is the coefficient of the age of the power
station in years

Aget of the power plant in years at time t.

Xpqt is the amount of electricity sent out in
Gigawatt-hours by plant p with filter q at age t

Yp is the pth plant effect

q is the qgth filter effect

s is the sth month effect

pat N0,

The model includes all the variables recorded in the
study. The group-lasso interaction network variable
selection is then selected to try and find a competing
model with more variables including interaction terms
in the variables mentioned above.

Model selection

Various model variable selection methods exist, such
as, among others, subset selection (namely, Best-
subset selection, Forward- and Backward-stepwise

selection), shrinkage (namely, Ridge Regression, Lasso
and Least angle regression) and methods using derived
input directions (namely, Principal Components
Regression and Partial Least Squares). The group-
lasso interaction network (glinternet) is used in this
paper to select significant variables (Lim and Hastie,
2015). Lasso regression is selected and used in this
paper since it performs both variable selection and
regularisation (shrinkage reducing model variance) to
enhance predictor accuracy. The method used is an
extension of the lasso (least absolute shrinkage and
selection operator) wvariable selection technique
(Tibshirani, 1996) and uses a version of the group-
lasso to select pairwise interactions and enforce
hierarchy (Yuan and Lin, 2006; Bien, Taylor and
Tibshirani, 2013). It automatically selects and adds
pairwise interactions into the Lasso model. The model
selection procedure implies that not all variables may
be used in the final model.
A model with less variables- no interaction terms
The glinternet variable selection approach, without
interaction terms (only the main effects), is used to
select a few significant variables from equation (1)
above.
The residuals plot is also used to determine the best
fitting model. A constant (homogeneous) residual
pattern (constant variance) plot over the predicted
values, suggest a good fit or an improvement in the
model of interest.
To check if the assumption of normality of data and
residuals holds, the box plot, histogram, Kolmogorov-
Smirnov test and the quantile-quantile (QQ) plot are
used in this study. A symmetric bell-shaped histogram
would suggest the data is Normally distributed. The
best model is found in the case of the Normal and
Lognormal distributions and all with identity link
functions as discussed later.
A Model with more terms- including interaction terms
In this section a more complex model is presented
using glinternet and allowing for the interaction of
variables.
For this model, the selection process will consider all
the explanatory variables and all pairwise interaction
terms: where the star (*) implies an interaction term.
The full model is given as:
Nepgs = Bo + BiXepgs + B2Agec +vp +ag + T+ 1 * s +

*Tg+ Yy *Ug + Xepgs * Ager + Xepgs * Vp

+ Xppgs * g + Xepgs * Ts + Age, x ag

+ Age, x5 + Age, * v,
where, for instance,
Xipgs * Age; is the joint effect of electricity sent out
in Gigawatt-hours (by filter q in plant p at given age
at t in month s) and Age; of the power plant at
time t (in years).
Other interaction parameters can be interpreted
similarly.
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Generalised linear models

In a classical regression model with data being
Var(Y)=2 s
assumed constant. However, in practise, it is common

Normally distributed, the wvariance

to find data in the form of continuous measurements
where the wvariance increases with the mean
(McCullagh and Nelder, 1989). The Lognormal model
is one such model.

The Lognormal distribution

If a random variable x is such that x~N(u, ¢?), then
under the transformation y=e* then
Y~Lognormal(u, 6?) © In (Y)~N(u, 02). To fit a
Lognormal distribution to a data set, one can firstly
log transform the data and then fit a normal
distribution to it.

If a random variable Y, with pdf f(y;u,c2) =

mexr) [—#(ln(y) - u)z],— o< p<oo,y>
0,0 > 0, has a variance that increases with the mean,
that is for small , the appropriate variance Var(Y) =
02[E(Y)]? = u?6? stabilising transformation would be
the logarithm.

The Lognormal model has a variance which increases
with the mean. The variance increases with the mean
in such a way that the coefficient of variation is a
constant. The Lognormal modelling can be used to
compensate for such increases with the mean. Also,
for small , the log-transformed wvariable In(Y) has
approximate mean and variance given by

1% 2
E(n() == Ink) = In () - =
i=1

The log transformed variable has variance given as

dlny

2
1
Var[ln(Y)] = le:ﬂ] Var(Y) = #—zx 1262 = g2

Since the variance of the Lognormal distribution can

be written as Var(Y) = u?62?,

where, EY)=u=-exp(u+ %2) has 0=

V(exp(a?) — 1)

The logarithm of the data has a constant variance.

Log transforming the data should result in

homoscedasticity. Therefore, the GLM Lognormal

distribution model will be used to compensate for

increases in variance of the emission with increases

in mean emissions when such an effect is present in

the data.

The exponential family and canonical form

Consider a random variable Y with distribution in the

exponential family and pdf f(y;p) in the standard form:
fy;w) = expla(y)b) + c(w) +d(y)]

When a(Y)=y, the distribution is said to be in

canonical form.

For a distribution to be a GLM, it must have the

three components, namely the error distribution, linear

predictor and link function (Dobson and Barnett,

2008). The Lognormal distribution is in the
exponential family has:

Error Distribution
The Lognormal distribution has independent response
variables Y; Y, .., Y, with Y; ~Lognormal(y, 0?) with
pdf given as

fiu) = exp {ln (y)_% _ [1n257y2)2 N
3In @ro?y2)]}.

where

ay) =In(y); b(w) = %; c(u) = . dy) =

T 207
_h»? 1 2,2
Py 2ln (2ro“y*®)
The distribution is not in canonical form since
a(y)=In(y).
Linear Predictor

The linear predictor is chosen as for instance
The parameters B and explanatory variable vector Xi
are such that

Ntpgs = Bo + ﬁlxtpqs + B, Age; + Yptag+ T

where, X; = [1,xi1,xi2 ...,xi,,] =1,
XipqsAges ..., December]
Link function
A flexible family of transformations, the power
transformations, was introduced by (Box and Cox,
1964). For a given parameter A, the transformation

is defined by

y*—1
g ="z JorA#0

log(y) forA=0.

The Box-Cox approach is used to estimate the value
of A that will help determine the best link function.
According to Myers et al. (2010) the natural values
for A are as follows:
When A=0 then Log link function
When A=1 then Identity link function
When A=1/2 then Square root link function
When A=-1 then Inverse link function

For the NOg2 data, there exist a monotone link
function g such that g(u;)) =n; = x';8,i=1,...,n
The choice of a link function can be based on the
nature of the data available for the study. The
response variable being continuous and positive, the
link function is chosen from these
Identity: g(/—‘pqt) = lpqt = Bo + P1Xpqr +
B2Ager +vp + ag + 75 (identity link function, A=1)
log : g(:upqt) = log (Upqr) = Bo + PrXpqr +
pAge; + v, +ag + 15 (log link function)
Linear regression is a GLM with an identity link
Model selection
Similar,ly to the linear regression, the group-lasso
interaction network will be considered in determining
models without and with interaction terms,
respectively.

4 Journal of Energy in Southern Africa - Vol 34 No 1 - March 2023



Maximum likelihood (ML) is the principal method of
estimation used for all GLMs (McCullagh and Nelder,
1989).

In a ML approach, a standard assessment is to
compare the fitted model with a fully or saturated
specified model (Hardin and Hilbe, 2007). Let Pmax
be the parameter vector of the saturated model and
bmax be the ML estimator of the Bmax. The likelihood
function of the saturated model evaluated at bmax is
L(bmax;y). of the
likelihood function of the model of interest, we have
lbmax;y) and l(b;y) as the associated log-likelihoods.
Such that

D = 21log(1) = 2[l(bmax; ¥) — U(b; ¥)]

is the deviance. The deviance for the Lognormal

For the maximum value L(b;y)

distribution model is given by

1 n
D =2log®) = ) (In &) = )?
i=1

1 n
== (n () - ).
i=1

A likelihood ratio test (LRT) can be used to perform
a hypothesis test on the parameters of interest. To
define this test, let M1 be a GLM with deviance D1
and p parameters f;,..,f, , and let M2 be a GLM

with deviance D2 and q<p parameters f;,....., ;. Let
B be partitioned as B = [ﬁ(l),ﬁ(z)]’ where, M =
B, -, Bg and B® = Bg+1s . Bp. Under the null
hypothesis

Histogram

T

Density

0.00000 0.00004 000008 0.00012

0 2000 €000 10000 14000

Nitrogen Dioxide Emission

Nitrogen Diexide Emission

Hy: B® = 0 (against Hy: @ =+ 0).

Let l(ﬁ ; y) be the maximum value of the log-likelihood
function for M1 and let l(ﬁ; y) be the value of the
log-likelihood function for Mg2. The difference of

deviances
Dy =Dy = 2[I(B;y) = UB: ¥)|~xp-0»
has an approximate 2 distribution with p-q degrees

of freedom and is known as the Likelihood Ratio
Test statistic of the null hypothesis.

Results

The data used in this paper is monthly NO2 emissions
per station, from Eskom, for a maximum period of
108 months (between 2005 and 2014).

Exploratory data analysis

Before any data analysis can be performed, it is
important to explore the data in order to know and
understand how it is distributed. Graphical display of
the data will be done by using the Histogram, Box
plot and the QQ plot for the NO2 emission (in tons).
From Figure 1 below, the histogram looks symmetric
but is bimodal and hence is not normally distributed
The
shows that NO2 emission (in tons) has skewness and

(Kolmogorov-Smirnov  p-value<0.01). Box-plot
kurtosis (skewness value=-0.11 and Kurtosis= -0.94).
The Quantile-Quantile plot suggests that NO2 emission
(in tons) is not Normally distributed since data points
deviate from a 450 line towards the extremities on
each graph.

Box plot

8000 12000
L 1

4000
L

0
1

Q-Q plot for Nitrogen Dioxide Emission

4000 8000 12000
1
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Figure 1: Histogram and Box plot for NO2 emission (tons)
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Efficiency of power stations
Summary statistics on all the power stations used in
modelling NO2 emission (in tons per month) are
presented in Figure 2 below

Average NO, emission
(tons/month) by power station

12000
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Figure 2: Average NO: emission (in tons/month) and average electricity sent-out (GWhs/month),
respectively. These graphical representations are given by power station per month

The power station with the lowest average NO2
emission is Komati with 1422.23 tons per month
and the highest is Majuba with 10433.49 tons per
month.

Komati power station produced the lowest amount of
electricity sent-out (in GWhs) on average per month
and Matimba power station produced the highest.
Hendrina is the oldest power station with an age of
44 years and Majuba is the youngest power station
with an age of 18 years in year 2014.

Since the efficiency of a power station cannot be
measured by observing the amount of NO2 emission
(in tons) alone, the relative nitrogen dioxide
(tons/Gigawatt-Hours) was calculated as follows

relative emission (r.e) =
NO, emission in tons

electricity sent out in Gigawatts hours
The power station with the lowest average relative

Average relative NO, emission
(tons/GWhs) by power station

47
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Average relative NO, emission (tons/GWhs)

Power station

Average relative NO, emission
(tons/GWhs) by month

NO2 emission (tons/GWhs) was taken to be the most
efficient of the 13 power stations. Figure 2 shows
Matimba with 2.4177 tons/Gigawatt-hours to be the
most efficient power station. This suggests that
Matimba produces the highest amount of -electricity
sent out. Kriel is the least efficient power station
with 5.96708 (tons/GWhs).

The most efficient month was July with 4.47572 of
average relative NO2 emission (tons/Gigawatt-hours)
and January being the least efficient with 4.647
tons/Gigawatt-hours. The

however minimal.

month differences are

The joint fabric filter, electrostatic precipitators and
flue gas condition were associated with the highest
efficiency, with 4.27707 tons/GWhs, and electrostatic
precipitators are associated with the least efficiency,
with an emission of 4.76371 tons/GWhs.

Average relative NO, emission
(tons/GWhs) by fiter

Fabric filter Electrostatic Fabric filter Electrostatic
plants, precipitators  plants  precipitators
Electrostatic and flue gas
precipitators ~ condition
and flue gas
condition

SansBRLS
~>ERGRGRLn0

Average relative NO, emission
(tons/GWhs)

Filter

Figure 3: Average Relative NO, emission (tons/Gigawatt-hours) by power station, month and filter, respectively
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Variable Selection

One of the aims of the paper is to find/select
explanatory variables with a significant effect on NO2
emission at Eskoms power plants.

Test for collinearity (Dependence)

It is important to check for collinearity between some
paired continuous explanatory variables before fitting
the data to a regression model. The presence of such
a relationship would mean that having information
about one variable implies that we can predict the
other. Thus, both would be trying to explain the same
variability for the one response variable.

The variance inflated factors,

VIF; = ﬁ ,i=1,...,n of the explanatory variables

will be used to check for collinearity. A value of

VIF; > 10 raises concern. RZ is the coefficient of
variation.

As an example, for two variables age (in years) and
electricity sent out (in GWhs), we have VIF; =
1.71897 < 10 for each. Which means there is no
significant dependence between the two explanatory
variables.

The Lasso via hierarchical interactions variable
selection

Since no collinearity between variables in the dataset
exists, one can start to select a model which includes
only the explanatory variables which are significant in
determining NO2 emission (in tons). In determining
this, the Lasso (with hierarchical interactions) is used.
The information is summarised in Table 1 below.

Table 1: Variables Selected Using Lasso Via Hierarchical Interactions

;If;:: . Electricity | Age Filter:A | Filter:B | Filter:C | Filter:D
Electricity 3.950 - -0.004 1] ] 0 0
Age 2731 0,004 _ 0 0 0 0
Station:ARNOT -824.742 0,092 -10,366 | -41,882 18,235 13,907 0,746
Station:CAMDEN 1287188 0,297 9415 | -13,754 8.857 4529 0.368
Station:DUVHA -309.,013 -0,109 -1,126 3,388 -7,021 2,798 -1,364
Station:GROOTVLEI -990.325 0,286 -4.843 10,177 -20,790 7,387 3.225
Station:HENDRINA -280.045 -0,034 -15,204 | -27,163 13,327 2,000 4837
Station:KENDAL 1916.795 -0,828 -62.388 19.048 20,585 -31,729 12,096
Station:KOMATI -792.174 0218 -2.230 6.207 7,744 -13,203 -0,746
Station:KRIEL -657,643 033 45654 | -32388 -30.851 102,580 -39.340
Station:LETHABO 1422043 0,298 6333 7,894 6,337 20007 | -14.846
Station:MAJUBA 426,360 1,044 -47.,633 71,010 -19.398 -23,725 -27.887
Station:MATIMBA -1083.048 -1,8584 57,082 45,900 48.437 -135285 30048
Station:MATLA -485,036 0,241 28474 -21.966 -20.429 71,314 -28.918
Station: TUTUKA -1618 456 0,047 66,520 | -13.876 -12.339 -16,667 42 882
Filter:A -2,031 0 0 = B . .
Filter:B -3,589 0 0 5 & . :
Filter:C 0,739 0 0 - 2 s .
Filter:D 4,901 0 0 - - - -

Table 1 shows all the coefficients generated by the
variable selection process. The table includes the main
effects and interaction effects. The first column shows
the coefficients of the main effect, and the rest of
the columns show the interaction effects. However,
not all terms have interaction effects, a O indicates
such a pair with no interaction effect. The variables
amount of electricity sent out (in GWhs), power station
used, age of power station (in years), and interaction
terms electricity and station, age and station, and
station and filter were selected and will be used to
produce GLM models for this paper.

In determining the GLMs, a model consisting of only
the main effects and without interaction terms will
first be considered. The model will be referred to as
model I, and is given by

Yipqg = Bo + B1Xep + B2Age: +vp + ag + &pq (2)
The second model with both the main and interaction
effects will also be considered and is given by
Ytpq =po + ﬁlxtpq + B2 Age: + Yp g t Xepg X
Ager + Xpe X Vp + Ager XV +Vp X g + Epq )
Generalised Linear Models
Since the results in Figure 1 suggest that NO2
emission (in tons) is not normally distributed, and it
is common to find data in the form of continuous
measurements where the variance increases with the
mean, the Lognormal GLM under model [ (model
without interaction terms) will be fitted.
Similarly, to the model in equation 2 above, the final
model is given by the linear predictor:

Nep = Bo + Bixp: + B2Age: + v,
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however, the explanatory variable, installed filter, will
not be included in this model since it produced
parameters with zero values. The model can thus be
given as
¥,y = 6.138 + 0.0008x,, + 0.026Age, + 7.

The plot of residuals versus predicted values, and also,
observed values versus predicted values are given in
Figures 4 and 5 below, respectively, for the

4000

Residuals
2000

0

-2000

0 2000 4000 6000 8000 12000

Predicted values

distribution model. Also included in the figures, are
the plots for the Normal distribution model with
identity link function model.
assessing the goodness of fit of the models.

The first plots are on residuals versus predicted values
(see Figure 4 below)

Below are the plots of the observed versus predicted
values (see Figure 5)

The plots help in

Residuals
o

T T T T T T
70 75 80 85 90 95

Predicted values

Figure 4: Model | (Model with no interaction terms) residual plots for the Normal and

Lognormal models, respectively.
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Figure 5: Model I (Model with no interaction terms) actual vs predicted values plots for
the Normal and Lognormal models, respectively.

A plot of observed against predicted values again
shows the Normal distribution models seems to show
an increasing variance with predicted values and hence
the model is not very good. On the other hand, the
Lognormal model seems to tame the wvariance
behaviour and hence gives the better fit.

A Model with more terms- including interaction terms
In the current section, a model with interaction terms
is considered. The resultant model is called Model II
and corresponds to the model in equation 2 above.

The Normal model

The final model includes the interaction effects
between Electricity and Age, Electricity and Station
and Age and station, and explanatory variables
electricity sent out (in GWhs), age of power station
(in years) and power station used.

The Lognormal model

Similarly, to the normal model above, the final model
includes the interaction effects between Electricity and

Age, Electricity and Station and Age and station, and
explanatory variables electricity sent out (in GWhs),
age of power station (in years) and power station
used.

For the two models above, the age of the power
station is included because of the inclusion of the
upper order interaction term Age*station. Also, the
interaction term between station and filter, and
explanatory variable filter are not included in the final
model since they produced coefficients with values of
zero.

Thus Model II for the two distributions is given as:
Yip = Bo + Bixep + BaAge: +vp + xep X Agey

+ Xpe X Vp +Ager X Vp t+ &
Below (in Figure 6) are the plots of residuals against
predicted values for the Normal and Lognormal
distributions under Model II.
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Figure 6: Model Il (Model with interaction terms) residual plots for the Normal and

Lognormal models respectively.

When the residuals are plotted against predicted
values, the shows an increasing
variance with predicted values and hence the model

Normal model

with these interaction terms is also not good. The
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behaviour and hence gives the better fit.

seems

The results of the actual against predicted plots in
Figure 7 below also confirm this observation.

Nitrogen Dioxide Emission

Predicted values

Figure 7: Model Il (Model with interaction terms) actual vs predicted values plots
for the Normal and Lognormal models, respectively.

Link functions and the deviance

In order to check for a good fit, the deviance was
compared to the degrees of freedom. Below are the
tables showing the model used, the deviance, degrees
of freedom and the associated link functions for the
Normal and Lognormal distributions models.

Table 2: Deviances and the different link function for Normal distribution

Model Degress of Link Functions for the Normal models
freedom
Identity Log Inverse
Model 1281 591964285.93%* | 674526234.77 Model did
Nep = Bo + Prxpe + P2Age. + vy not convarze
Model 11 1256 268150806.56** | 28459090865 Model did

Nep = Bo + Brxep + P2Age, + vy not converze
+ xpAge. + XYy

+Agey, * £

Normal distribution
The degrees of freedom for models 1 and II above
corresponding

are very small compared to their

deviances, that is

D,; > DF, = 1281 and D,; > DF, = 1256

Di1i and D2i are the deviances for model I
and model II, respectively (with i=1 and 2 representing
the identity and log link functions, respectively).

DF1 and DF2 are the degrees of freedom

for model I and model II, respectively.
This observation suggests that the Normal distribution
is not a good fit in modelling NO2 emissions from
Eskoms coal fuelled power stations. This observation
was checked and confirmed by the use of residual
plots and actual versus predicted plots. The identity
link function gave the lowest deviance and was hence
used.
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Lognormal model

Table 3: Deviance and link function for Lognormal distribution

Model Degrees of Link Functions for the
freedom Lognormal model

Identity Inverse | Lo

Model I 1281 7042** | 8031 757

Nep = Bo + Brxpe + B2Age. + v,

Model IT 1256
Nep = Bo+ Brxey + B2Age. + v, +xpAge,

+ XY, + Agecy, + &y

23.98** | 2805 26.0

All the models from the Lognormal distribution show
a good fit to the data since the deviance for each
link function is smaller than the degrees of freedom,
that is

D,; < DF; = 1281 and D,; < DF, = 1256

Di1i and D2i are the deviances for model I
and model II, respectively (with i=1 and 2 representing
the identity and log link functions, respectively).

DF1 and DF:2 are the degrees of freedom
for model 1 and model 1II, respectively.

Under the Lognormal model (for both model I and
model II), the best fit is with the identity link function
since it has the smallest deviance value of the three
link functions.

Parameter estimation

Parameters were estimated using ML estimation with
Matimba as the basis for comparison since it produced
the lowest volumes of average relative NO2 emissions
and hence was the most efficient.

The Lognormal distribution with identity link function
(model I detailed results)

Model I: Model with explanatory variables -electricity
sent out (in GWhs), age of power station (in years)

where, and power station used. Table 4 gives the parameter
estimates of the best fitting model [ using the
Lognormal model as discussed above.
Table 4: Lognormal model I (with no interaction terms): Analysis of ML parameter
estimates
Parameter DF | Estimate | Standard | Likelihood Ratio Wald | Pr=ChiSq
Error 05% Chi-
Confidence Square
Limits
Intercept 1 6.1380 0.0964 | 59488 | 63271 | 4031.04 =.0001
Electricity_Sentout 1 0.0008 0.0000 | 00008 [ 0.0009 82401 =.0001
Age 1 0.0260 00026 | 00209 [ 00312 98 42 =0001
Power_Station_Effect | ARNOT 1 03132 0.0010 | 01935 04329 26.34 =.0001
Power_Station_Effect | CAMDEN 1 02735 0.0640 | 01480 [ 03990 18.27 <0001
Power Station Effect | DUVHA 1 0.5529 00387 | 04769 | 06288 203 89 =0001
Power_Station_Effect | GROOTVLEI 1 0.1369 0.0670 | 00054 | 02684 417 0.0412
Power Station_Effect | HENDRINA 1 0.3203 0.0647 | 01934 [ 04473 24 48 =.0001
Power Station Effect | KENDAL 1 03276 00321 | 04846 | 05906 269093 =0001
Power_Station_Effect | KOMATI 1 -0.1939 0.0745 | -0.3400 | -0.0479 6.78 0.0092
Power Station Effect | KRIEL 1 0.8213 00491 | 07230 [ 09176 27981 =0001
Power Station Effect | LETHABO 1 0.7189 0.0328 | 06345 07833 47945 =.0001
Power_Station_Effect | MAJUBA 1 11764 0.0400 | 10963 | 12565 820.25 =.0001
Power Station_Effect | MATLA 1 0.6919 0.0392 | 06130 [ 07489 311.02 =.0001
Power Station Effect | TUTUKA 1 0.8252 00374 | 07518 | 08986 486.09 =0001
Power_Station_Effect | MATIMBA ] 0.0000 0.0000 | 0.0000 | 0.0000
Scale 1 02331 0.0046 | 02244 [ 02424
Table shows the ML parameter estimate of An estimate with a positive value for the plant

electricity sent out (in GWhs) of 0.0008. This means
that an increase in electricity sent out by 1 Gigawatt-
hour will increase the log NO2 emission in log tons
by 0.0008 (equivalent to 1.0008 tons). Other log
tons estimates will be similarly interpreted.

coefficient means the associated power station variable
in the model has the effect to produce log NOg2
emission exceeding those of the basis, Matimba, by
the estimated value. A negative value means the basis
(Matimba) effect exceeded the log NO2 emission of
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the associated power station by the value of the
estimate. The lowest plant coefficient implies the
lowest impact on emission (in log tons of NO2) having
taken account the other variables in the model. The
highest plant coefficient implies the highest log NOz2
emission impact.

Komati, Grootvlei and Camden produce less electricity
and hence are expected to produce less NO2
emissions.

According to the power plant parameter estimates in
Table 4, Komati (with log emission level of 0.1939
log tons less than Matimba) has the least impact of
the 13 power stations. It has the lowest parameter
estimate (and the only estimate with a negative value).
Majuba (with 1.1764 log tons more than Matimba)
has the greatest impact in increasing emissions. The
parameters are interpreted in the presence of other
variables in Model 1.

The Lognormal distribution with Identity link function:
Model [l (model with interaction terms)

The parameter estimates for the best Model I are
given in table 5. This model consists of the
explanatory variables electricity sent out (in GWhs),
age of power station (in years) and power station
used, and the interaction terms electricity*age,
electricity*station and age*stationln Table 5 above, the
ML coefficient of electricity sent out (in GWhs) is
0.0007. This means that an increase in electricity
sent out by 1 Gigawatt-hour will increase the log NO2
emission in log tons by 0.0007 units (equivalent to
1.0007 tons). On the other hand, an increase of age
by a year will increase log NO2 emission by 0.0298
log tons (equivalent to 1.0302 tons).

Table 5 gives the power station effect in the presence
of other variables in the Lognormal model. According
to the Lognormal Model II, the power stations Arnot,
Hendrina, Camden, Grootvlei, Tutuka, Komati and
Kriel had less effect on emissions compared to
Matimba since these had negative parameter
estimates. This is happening when interaction effects
are allowed for. Arnot (with 0.9759 log tons less
than Matimba) had the least effect from the 13 power
stations followed by Hendrina (with 0.7919 log tons
less than Matimba). Duvha, Matla, Majuba, Lethabo
and Kendal had the greatest effect in increasing
emissions compared to Matimba, with Kendal
(emission level of 1.6753 log tons more than
Matimba) contributing the greatest effect on emissions
of all the 13 power stations.

Since the interaction of electricity sent out (in GWhs)
and age produced a very small value of the estimate
such that the software package used cannot display it
but its sign only, we can only conclude that the joint
increase in electricity sent out by 1 Gigawatt-hour and
increase in age by a year will decrease the log NO2
emission in log tons by a value less than 0.0001
units.

Taking a closer look on the interaction term:
electricity*station

For the interaction term electricity *station, the least
effect from the 13 power stations comes from the
interaction term electricity*Kendal (with only 0.0001
log tons less than electricity*Matimba) and the
interaction of the electricity variable with Komati
power station has the greatest effect to increase
emissions significantly (with 0.0051 more log tons
when compared to electricity*Matimba).

Komati, Grootvlei and Camden produce less electricity
and hence are expected to produce less NO2
emissions. However, the emissions are
disproportionately higher.

For the effect age*station, Komati, Kendal, Camden,
Grootvlei, Lethabo, Hendrina, Duvha and Majuba have
interaction with age coefficients to reduce emission
impact since they all have negative interaction
coefficients when compared with the basis,
age*Matimba. Age interaction with, Kriel, Arnot, Matla
and Tutuka contribute to increasing emissions since
the coefficients are all positive. The interaction term
age®station has Komati (with 0.0575 log tons less
than age*Matimba) leading to the least impact on
emission. Age interaction with Tutuka leads to the
greatest emission impact (with 0.0404 more log tons
compared to age*Matimba). Generally, the older plants
give more emissions. Tutuka produces more emissions
than expected given its age.

Criteria for assessing goodness of fit: Selecting the
best model.

One can now determine if the addition of interaction
terms produced a better fit or not when compared to
the model with less terms (no interaction effects).
Lognormal model with identity link function

Let D1 and D2 be the deviances for models I and II,

respectively, such that
D, = 70.4203 with degrees of freedom = 1281

and
D, = 23.9824 with degrees of freedom = 1256

Now, under the null hypothesis given as
Hy: BP0 against Hi: B + 0

We have
Dy — D, = 70.4203 — 23.9824=46.4379> 37.65 =

2 _ 2
X1281-1256 = X25

This suggest that the null hypothesis Hy: 8@ = 0 will
be rejected at a=0.05 and we can conclude that the
addition of the interaction terms is significant in
predicting the emission of NO2 and thus model II can
be used in predicting NO2 emission and can be
regarded as the best fit of the two.

Evaluating the predictive models (RMSE, MAPE and
MAE)
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In addition to the residuals plots above, prediction
evaluation metrices are presented to confirm the fitting
model. Table 6 below shows the root mean squared
error (RMSE), mean absolute percentage error (MAPE)
and the mean absolute error (MAE) for the two
models, Normal and Lognormal distributions.

From Table 6 above, the MAPE for the Lognormal

Table 6: Prediction evaluation metrices for the Normal and Lognormal models with
interaction terms (Model IT)

Distribution model IT RMSE MAPE My
Normal 454.8697 0.0534 296.1
Lognormal 0.1360 0.0086 0.0¢

model (with a value of 0.86%) is lower than that of
the Normal distribution (with a value 5.34%). This
suggests the Lognormal model is a better fit compared
to the Normal model. This is supported by the results
of the RMSE and MAE i.e. for the Lognormal model
II, MAE has a lower value of 0.0653 log tons
(equivalent to 1.0675 tons) compared to 296.1763
tons of the Normal distribution model II.

Discussion

In a classical regression model, the wvariance is
assumed a constant and the data is assumed to be
normally distributed. However, in practice, it is
common to find data in continuous measurements
where the wvariance increases with the mean
(McCullagh and Nelder, 1989). In such cases, a
Lognormal GLM could be used. Diagnostic plots
suggest an increasing variance with an increasing
mean for this data set. The data set obeys the
constant coefficient of variation assumption.

The results of the linear regression model suggest that
NO2 emission data is not Normally distributed. This
is supported by the results from the histogram, box
plot. The Lognormal distribution models are also fitted
to the data. The best link function is the identity link
as evidenced by the smallest deviance compared to
the log and inverse link functions. Intermediate results
in comparisons of the Lognormal model with identity
link function and linear regression model, using the
residuals plots and actual versus predicted plot,
indicate that, the Lognormal model is better as it
produced plots that showed improved variance
behaviour that is now constant. It can be concluded
that, the GLM model is a better model than the
linear regression model in explaining and predicting
NO2 emission data from Eskoms coal-fuelled power
stations.

The identification of significant variables contributing
to high emissions is essential in the monitoring and
managing of emissions. The interaction terms
electricity*station, Age*station and variables electricity

sent out (in GWhs), age of power station (in years),
power station used can be used in describing and
predicting NO2 emissions from Eskoms coal fuelled
power stations.

To enhance research on NO2 emissions from Eskom
coal fuelled power stations, it would be beneficial to
add the amount and quality of coal used in the
generation of electricity as some of the explanatory
variables. For future studies, the researchers would
like to compare two GLM distributions models that
obey the constant coefficient of variation assumptions
namely, Lognormal and Gamma models.

Conclusion

This paper discusses the use of GLMs in the modelling
of emission data from the 13 Eskoms coal-fuelled
power stations. GLM distribution models, namely the
Normal and the Lognormal, were constructed and
compared. Each distribution model was divided into
two, one without (Model 1) and the other with
interaction terms (Model II), respectively, by making
use of group-lasso interaction network (glinternet)
variable selection method. This was done to determine
if addition of interaction effects in the models is
significant or not. The deviance was then used to
determine the best link function between the identity,
log and inverse for Model I and Model 1. The identity
link function was deemed the most appropriate for
the given dataset. In the case of the Normal GLM
models, the deviance had values that were very large
compared to their corresponding degrees of freedom,
suggesting that the Normal distribution models (and
thus the linear regression models) are not a good fit
for the data. This is expected as it is common to
have continuous data, including emission data, that
does not obey the Normality assumption (McCullagh
and Nelder, 1989). We can, therefore, conclude that
the linear regression model is not a good fit for the
NO2 emission data. For the Lognormal distribution
model, the addition of interaction terms was
significant. The main contribution of this paper is to
demonstrate the GLMs flexibility offered by the link
functions to transform the data compared to the
limited classical linear regression when modelling NO2
emission data (Nelder and Wedderburn, 1972). The
modelling helps in coming up with better models to
explain Eskom emmissiom data, such the NO2
emission data. The study is useful to power utilities
such as Eskom in the monitoring and management
of emissions to meet the regulations and thus manage
the emission to minimise the exposure of high NO2
emissions to humans and the environment.
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Table 5: Lognormal model II: Analysis of ML Parameter Estimates

Analysis Of Maximum Likelihood Parameter Estimates

Standard Likelihood Ratio Wald
95% Confidence Chi-

Parameter DF | Estimate Error Limits Square | Pr> ChiSq
Intercept 1 6.9384 0.4199 6.1148 7.7620 = 273.05 <.0001
electricity 1 0.0007 0.0002 0.0004 0.0010 17.57 <.0001
Age 1 0.0298 0.0167 | -0.0031 0.0626 3.16 0.0754
station ARNOT 1 -0.9759 03318 | -1.6267 | -0.3251 8.65 0.0033
station CAMDEN 1 -0.6835 0.4174 | -1.5021 0.1351 2.68 0.1015
station DUVHA 1 0.0676 0.3965 | -0.7101 0.8453 0.03 0.8646
station GROOTVLEI 1 -0.6122 0.6821 | -1.9502 0.7258 0.81 0.3695
station HENDRINA 1 -0.7919 0.4624 | -1.6989 0.1150 293 0.0868
station KENDAL 1 1.6753 0.2728 1.1403 22104 37.72 <.0001
station KOMATI 1 -0.2227 1.0517 = -2.2854 1.8401 0.04 0.8323
station KRIEL 1 -0.0715 0.3220 = -0.7029 0.5600 0.05 0.8244
station LETHABO 1 1.3508 0.2938 0.7746 1.9270 21.14 <.0001
station MAJUBA 1 0.8762 0.3054 0.2772 1.4752 8.23 0.0041
station MATLA 1 0.1379 0.3545 | -0.5575 0.8332 0.15 0.6973
station TUTUKA 1 -0.5523 0.2839 | -1.1091 0.0046 3.78 0.0517
station MATIMBA 0 0.0000 0.0000 0.0000 0.0000

electricity*Age 1 -0.0000 0.0000 | -0.0000 0.0000 3.08 0.0791
electricity*station | ARNOT 1 0.0007 0.0002 0.0004 0.0010 21.05 <.0001
electricity*station | CAMDEN 1 0.0032 0.0002 0.0028 0.0035 | 384.35 <.0001
electricity*station = DUVHA 1 0.0002 0.0001 0.0000 0.0004 4.74 0.0295
electricity*station | GROOTVLEI 1 0.0024 0.0002 0.0020 0.0029 | 128.86 <.0001
electricity*station | HENDRINA 1 0.0009 0.0002 0.0005 0.0012 19.75 <.0001
electricity*station | KENDAL 1 -0.0001 0.0001 | -0.0003 0.0001 0.93 0.3355
electricity*station = KOMATI 1 0.0051 0.0003 0.0044 0.0057 | 209.71 <.0001
electricity*station = KRIEL 1 0.0004 0.0001 0.0002 0.0006 12.40 0.0004
electricity*station | LETHABO 1 0.0000 0.0001 | -0.0002 0.0002 0.00 0.9677
electricity*station | MAJUBA 1 -0.0000 0.0001 | -0.0002 0.0002 0.00 0.9792
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