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Abstract 

The aim of this paper is to determine if a generalised linear model (GLM) is a better model over the traditional 
simple linear regression when fitted to nitrogen dioxide (NO2) emitted into the atmosphere during the pro-
duction of electricity from Eskom’s coal-fuelled power stations. GLMs have flexibilities allowing the variance 
to vary as a function of the mean (non-constant variance), and have the advantage of keeping the data in its 
original scale. Unlike regression, the models do not assume a linear relationship between the response vari-
able and the explanatory variables, and instead  the link function is used. The data also need not be Normally 
distributed. Group-lasso interaction network (glinternet) was used in variable selection for the GLM models. 
A similar model using regression analysis was fitted for comparison. The results show that a GLM can be 
used to predict and explain NO2 emissions from coal fired electricity stations in South Africa. The Lognormal 
model was found to be the better model by diagnostic measures including plots that showed improved vari-
ance behavior in the residuals. Various variables such as the amount of electricity sent out (in GWhs), age of 
power station (in years), power station used, and interaction terms such as electricity and station, age and 
station can be used in describing and predicting NO2 emissions (in tons) from Eskom’s coal fuelled power 
stations. 
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1. Introduction 

Coal is the primary source of energy in South Africa 

and its use has increased significantly over the years. 

This is as a result of an increased demand of elec-

tricity in South Africa. This has given rise to more 

emission of pollutants including nitrogen dioxide 

(NO2) from the coal fired electricity power stations 

(Eskom, 2016). Exposure to this emission impacts 

on human health (Anand, Varma and Srimurali, 

2013; World Health Organization, 2013; Wellenius, 

Schwartz and Mittleman, 2015). In order to control 

NO2, and sulphur dioxide (SO2) emissions and other 

pollutants from the electricity industry, minimum 

emission standards were published in terms of the 

National Environmental Management: Air Quality 

Act in 2010, requiring Eskom to install many retrofits 

of abatement technologies in order to comply with 

the emission standards (Eskom, 2011). 

The selection of the right statistical probability 

distribution for describing or modelling environmen-

tal pollution data is an important step. These proba-

bility models have become the basis for quantifying 

emissions to meet the evolving information needs of 

environmental quality management (Singh et al., 

2001). 

Georgopoulos and Seinfeld (1982) concluded 

that air pollutant concentrations are inherently ran-

dom variables because of their dependence on the 

fluctuations of a variety of meteorological and emis-

sion variables. They also concluded that there is no 

single statistical distribution which gives the best fit 

to air quality/emission at all time periods. The choice 

of a statistical distribution generally depends on the 

pollutant, the time period of interest, the average 

time of the data, the location and other factors.  

Popular statistical probability density functions in 

representing atmospheric concentrations emissions 

include the two-parameter distributions (namely, the 

Lognormal, the Weibull and the Gamma), three-pa-

rameter distributions (namely, the 3-parameter 

Lognormal, the 3-parameter Gamma, the 3-param-

eter Weibull and 3-parameter Beta distributions) 

and four-parameter distributions (e.g. 4-parameter 

Beta distribution) (Georgopoulos and Seinfeld, 

1982). The distributions are useful because of their 

property of being right-skewed, allowing for the 

modelling of higher emissions. 

1.1 Statement of the problem 

The aim of this study is to determine if generalised 

linear models (GLMs) have an advantage or give a 

better model fit than the traditional linear regression 

model when fitted to the NO2 emission data. The 

study also aims to determine those variables contrib-

uting significantly to the amount of NO2 emitted into 

the atmosphere during the production of electricity 

from Eskom’s 13 coal-fuelled power stations.   

1.2 Justification of the study 

The identification of input variables that contribute 

to the NO2 emission is important to combat and 

monitor high emission volumes into the atmosphere 

in order to find ways to decrease such emissions and 

meet statutory regulations and lower the risk associ-

ated with electricity production emissions. The flexi-

bilities of GLMs, compared to models based on 

regression analysis, can be useful in the determina-

tion of these input variables. This flexibility includes 

advantages of allowing the variance to vary as a 

function of the mean (non-constant variance), and 

the response variables having a distribution other 

than the Normal distribution. Also, GLMs provide 

the advantage of keeping the data to its original 

scale by making use of link functions. In the South 

African context, there is not sufficient literature to 

suggest a wide use of GLMs in the modelling of 

emission, especially the NO2 pollutant. The study 

will try to reduce this gap. 

1.3 Objectives of the study 

In this study, the objectives are: 

• To check if the Lognormal distribution-based 

GLM is a better model over the traditional sim-

ple linear regression (the Normal distribution-

based GLM with identity link function) when fit-

ted on the response NO2 emission data.  

• To determine if the variables electricity sent out 

(GWhs), age of power station (years), power 

station, abatement technology, and month can 

be used to predict the emission of NO2 (tons). 

• To rank the Eskom power plants in terms of NO2 

emission efficiency. 

1.4 Contribution of the study  

With the aging of the power stations and high de-

mand for electricity, NO2 emissions are projected to 

increase from coal fired electricity stations in South 

Africa (Pretorius et al., 2015). There is therefore a 

need to model NO2 emissions from these stations. 

This will provide information to monitor and man-

age emissions to meet the regulations and thus min-

imise the exposure of high  emissions to humans and 

the environment.  

The rest of the paper is organised as follows: sec-

tion 2 reviews the literature; section 3 gives the 

methodology; section 4 gives the results; section 5 

discusses the results, and section 6 concludes. 

2. Literature review 

This section reviews some of the literature, including 

models used in modelling  emissions. 

Perez and Trier (2001) used predictions to com-

pare linear regression and multilayer neural net-

works to find a method of predicting NO and NO2 

concentrations. A feed-forward neural network was  
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chosen as the convenient method of prediction over 

the linear regression since this method had reasona-

ble control over the adjustment of parameters.  
In studies by Nagendra and Khare (2006), Perez 

and Trier (2001) and many others, such as those by 

Kukkonen et al. (2003) and Capilla (2014), there 

was a strong non-linear dependency between NO2 

emissions (concentrations) and the selected input 

variables. Simple linear models, multiple regression 

models, feed-forward multilayer perceptron net-

works etc, were compared in modelling NO2 con-

centrations. 

Pollutant concentrations rarely follow a Normal 

distribution. NO2 is no different from the other pol-

lutants, but it can also be modelled using the statis-

tical distributions from the flexible exponential 

family distribution and it also shares the statistical 

characteristics found in other pollutants. The expo-

nential family distributions give the much needed 

flexibility in the construction of such models (Nelder 

and Wedderburn, 1972).  

The GLM model is used to model NO2 emissions 

at Eskom’s coal fueled power plants in this study.  

3. Methodology 
The linear regression and the GLM models are dis-

cussed in this section. 

3.1 Linear regression 

This section focuses on models to be used in regres-

sion under the Normality assumption of the re-

sponse variable NO2. This assumption implies that 

the emission data is symmetric.  

The following model will be fitted on the NO2 

emission data initially. Analysis of Covariance (AN-

COVA) is applicable, since the explanatory variables 

are both continuous and categorical and the re-

sponse variable is continuous. 

 

𝑌𝑝𝑞𝑡 = 𝛽0 + 𝛽1𝑥𝑝𝑞𝑡 + 𝛽2𝐴𝑔𝑒𝑡  + 𝛾𝑝 + 𝛼𝑞 +  𝜏𝑠 +  𝜀𝑝𝑞𝑡, 

 (1) 

where: Ypqt is the response variable (NO2 emitted in 

tons by plant p with abatement filter q and at time t 

(in years)); β0 is the intercept; β1 is the coefficient of 

the electricity sent out in GWh; β2 is the coefficient 

of the age of the power station in years; Aget of the 

power plant in years at time t; xpqt is the amount of 

electricity sent out in GWh by plant p with filter q at 

age t; γp is the pth plant effect; αq is the qth filter effect; 

τs is the sth month effect; and εpqt ~N(0,σ2
). 

The model includes all the variables recorded in 

the study. The group-lasso interaction network vari-

able selection is then selected to try and find a com-

peting model with more variables including 

interaction terms in the variables mentioned above. 

3.1.1 Model selection 
Various model variable selection methods exist, 

such as, among others, subset selection (namely, 

best-subset selection, forward- and backward-step-

wise selection), shrinkage (namely, Ridge Regres-

sion, lasso and least angle regression) and methods 

using derived input directions (namely, principal 

components regression and partial least squares). 

The group-lasso interaction network (glinternet) is 

used in this paper to select significant variables (Lim 

and Hastie, 2015). Lasso regression is selected and 

used in this paper since it performs both variable se-

lection and regularisation (shrinkage reducing mod-

el variance) to enhance predictor accuracy. The 

method used is an extension of the lasso (least ab-

solute shrinkage and selection operator) variable se-

lection technique (Tibshirani, 1996) and uses a 

version of the group-lasso to select pairwise interac-

tions and enforce hierarchy (Yuan and Lin, 2006; 

Bien, Taylor and Tibshirani, 2013). It automatically 

selects and adds pairwise interactions into the Lasso 

model. The model selection procedure implies that 

not all variables may be used in the final model. 

3.1.1.1 A model with fewer variables and no inter-
action terms 
The glinternet variable selection approach, without 

interaction terms (only the main effects), is used to 

select a few significant variables from Equation (1).  

The residuals plot is also used to determine the 

best fitting model. A constant (homogeneous) resid-

ual pattern (constant variance) plot over the pre-

dicted values, suggest a good fit or an improvement 

in the model of interest. 

To check if the assumption of normality of data 

and residuals holds, the box plot, histogram, Kolmo-

gorov-Smirnov test and the quantile-quantile (QQ) 

plot are used in this study. A symmetric bell-shaped 

histogram would suggest the data is Normally dis-

tributed. The best model is found in the case of the 

Normal and Lognormal distributions, and all with 

identity link functions as discussed later. 

3.1.1.2 A model with more terms, including inter-
action terms 
In this section a more complex model is presented 

using glinternet and allowing for the interaction of 

variables. For this model, the selection process will 

consider all the explanatory variables and all pair-

wise interaction terms: where the star (*) implies an 

interaction term. The full model is given as: 

𝜂𝑡𝑝𝑞𝑠 = 𝛽0 + 𝛽1𝑥𝑡𝑝𝑞𝑠  + 𝛽2𝐴𝑔𝑒𝑡 + 𝛾𝑝 + 𝛼𝑞 + 𝜏𝑠 +

𝛾𝑝 ∗ 𝜏𝑠 + 𝛼𝑞 ∗ 𝜏𝑠 + 𝛾𝑝 ∗ 𝛼𝑞 +  𝑥𝑡𝑝𝑞𝑠 ∗ 𝐴𝑔𝑒𝑡 +

𝑥𝑡𝑝𝑞𝑠 ∗ 𝛾𝑝 + 𝑥𝑡𝑝𝑞𝑠 ∗ 𝛼𝑞 + 𝑥𝑡𝑝𝑞𝑠 ∗ 𝜏𝑠 + 𝐴𝑔𝑒𝑡 ∗ 𝛼𝑞 +

𝐴𝑔𝑒𝑡 ∗ 𝜏𝑠 + 𝐴𝑔𝑒𝑡 ∗ 𝛾𝑝,  (2) 
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where, for instance, 𝑥𝑡𝑝𝑞𝑠 ∗ 𝐴𝑔𝑒𝑡 is the joint effect of 

electricity sent out in GWh (by filter q in plant p at 

given age at t in month s) and 𝐴𝑔𝑒𝑡 of the power 

plant at time t (in years). 

Other interaction parameters can be interpreted 

similarly. 

3.2 Generalised linear models 

In a classical regression model with data being Nor-

mally distributed, the variance  Var(Y)=σ2
  is as-

sumed constant. However, in practise, it is common 

to find data in the form of continuous measurements 

where the variance increases with the mean (McCul-

lagh and Nelder, 1989). The Lognormal model is 

one such model. 

3.2.1 The Lognormal distribution 
If a random variable x is such that 𝑥~𝑁(𝜇,  𝜎2), then 

under the transformation 𝑦 = 𝑒𝑥
, 

𝑌~𝐿𝑜𝑔𝑛𝑜𝑟𝑚𝑎𝑙(𝜇,  𝜎2) ⟺  ln (𝑌)~𝑁(𝜇,  𝜎2). To fit a 

Lognormal distribution to a data set, one can firstly 

log transform the data and then fit a normal distri-

bution to it.  

If a random variable Y, with pdf 𝑓(𝑦; 𝜇, 𝜎2) =
1

𝑦(2𝜋𝜎2)
1

2⁄
exp [−

1

2𝜎2
(ln(𝑦) − 𝜇)2] , − ∞ ≤ 𝜇 ≤

∞ , 𝑦 > 0 , 𝜎 > 0, has a variance that increases with 

the mean, that is for small σ, the appropriate vari-

ance 𝑉𝑎𝑟(𝑌) = 𝜃2[𝐸(𝑌)]2 = 𝜇2𝜃2
 stabilising trans-

formation would be the logarithm. 

The Lognormal model has a variance which in-

creases with the mean. The variance increases with 

the mean in such a way that the coefficient of varia-

tion is a constant. The Lognormal modelling can be 

used to compensate for such increases with the 

mean. Also, for small σ, the log-transformed variable 

ln(Y) has approximate mean and variance given by 

     𝐸(ln(𝑌)) =
1

𝑛
∑ ln(𝑦𝑖)𝑛

𝑖=1 ≈ ln (μ) −
𝜎2

2
 . (3) 

The log transformed variable has variance given as  

𝑉𝑎𝑟[ln(𝑌)] ≈ [
𝜕𝑙𝑛𝑦

𝜕𝑦
|𝑦=𝜇]

2

. 𝑉𝑎𝑟(𝑌) =
1

𝜇2
× 𝜇2𝜃2 = 𝜃2. 

 (4) 

Since the variance of the Lognormal distribution can 

be written as 𝑉𝑎𝑟(𝑌) = 𝜇2𝜃2
, where, 𝐸(𝑌) = 𝑢 =

exp (𝜇 +
𝜎

2

2
) has 𝜃 = √(exp(𝜎2) − 1). 

The logarithm of the data has a constant vari-

ance. Log transforming the data should result in ho-

moscedasticity. Therefore, the GLM Lognormal 

distribution model will be used to compensate for in-

creases in variance of the emission with increases in 

mean emissions when such an effect is present in the 

data. 

3.2.2 The exponential family and canonical form 
Consider a random variable Y with distribution in 

the exponential family and pdf f(y;μ) in the standard 

form:  

    𝑓(𝑦; 𝜇) = exp[𝑎(𝑦)𝑏(𝜇) + 𝑐(𝜇) + 𝑑(𝑦)].  (5) 

When a(Y)=y, the distribution is said to be in ca-

nonical form. For a distribution to be a GLM, it must 

have the three components, namely the error distri-

bution, linear predictor and link function (Dobson 

and Barnett, 2008). The Lognormal distribution is in 

the exponential family has:  

a) Error distribution 
The Lognormal distribution has independent re-

sponse variables 𝑌1, 𝑌2, … , 𝑌𝑛 with 

𝑌𝑖,~𝐿𝑜𝑔𝑛𝑜𝑟𝑚𝑎𝑙(𝜇, 𝜎2), with pdf given as  

𝑓(𝑦; 𝜇) = exp {ln (𝑦).
𝜇

𝜎2 −
𝜇2

2𝜎2 − [
ln (𝑦)2

2𝜎2 +
1

2
ln (2𝜋𝜎2𝑦2)]}, (6) 

Where: 

𝑎(𝑦) = ln (𝑦); 𝑏(𝜇) =
𝜇

𝜎2; 𝑐(𝜇) = −
𝜇2

2𝜎2; 

𝑑(𝑦) = −
ln(𝑦)2

2𝜎2 −
1

2
ln (2𝜋𝜎2𝑦2). 

 

The distribution is not in canonical form since 

a(y)=ln(y). 

b) Linear predictor  
The parameters β and explanatory variable vector 

Xi are such that  

𝜂𝑡𝑝𝑞𝑠 = 𝛽0 + 𝛽1𝑥𝑡𝑝𝑞𝑠 + 𝛽2𝐴𝑔𝑒𝑡  + 𝛾𝑝 + 𝛼𝑞 + 𝜏𝑠, (7) 

where 

𝑋𝑖 = [1, 𝑥𝑖1, 𝑥𝑖2 … , 𝑥𝑖𝑝] = [1,
𝑥𝑡𝑝𝑞𝑠 , 𝐴𝑔𝑒𝑡 … , 𝐷𝑒𝑐𝑒𝑚𝑏𝑒𝑟].  

c) Link function 
A flexible family of transformations, the power trans-

formations, was introduced by Box and Cox (1964). 

For a given parameter λ, the transformation is de-

fined by: 

     𝑔(𝑦) = (
𝑦𝜆−1

𝜆
𝑓𝑜𝑟 𝜆 ≠ 0

log (𝑦) 𝑓𝑜𝑟 𝜆 = 0.
  (8) 

The Box-Cox approach is used to estimate the value 

of λ that will help determine the best link function. 

According to Myers et al. (2010) the natural val-

ues for λ are as follows: 

• When λ=0 then Log link function 

• When λ=1 then Identity link function 
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• When λ=1/2 then square root link function 

• When λ=-1 then inverse link function 

 
For the NO2 data, there exists a monotone link 

function g such that 𝑔(𝜇𝑖) = 𝜂𝑖 =  𝑥′
𝑖𝛽, 𝑖 = 1, … . , 𝑛. 

The choice of a link function can be based on the 

nature of the data available for the study. The re-

sponse variable being continuous and positive, the 

link function is chosen from these. 

Identity: 𝑔(𝜇𝑝𝑞𝑡) = 𝜇𝑝𝑞𝑡 = 𝛽0 + 𝛽1𝑥𝑝𝑞𝑡 + 𝛽2𝐴𝑔𝑒𝑡  +

𝛾𝑝 + 𝛼𝑞 + 𝜏𝑠  (identity link  function, 𝜆 = 1).  (9)        

𝑙𝑜𝑔 ∶  𝑔(𝜇𝑝𝑞𝑡) = log (𝜇𝑝𝑞𝑡) = 𝛽0 + 𝛽1𝑥𝑝𝑞𝑡 +

𝛽2𝐴𝑔𝑒𝑡  + 𝛾𝑝 + 𝛼𝑞 + 𝜏𝑠  (log link function).  (10)   

Linear regression is a GLM with an identity link. 

3.2.3 Model selection 
Similarly to the linear regression, the group-lasso in-

teraction network will be considered in determining 

models without and with interaction terms, respec-

tively. Maximum likelihood (ML) is the principal es-

timation method used for all GLMs (McCullagh and 

Nelder, 1989).  

In a ML approach, a standard assessment is to 

compare the fitted model with a fully or saturated 

specified model (Hardin and Hilbe, 2007).  Let βmax 

be the parameter vector of the saturated model and 

bmax be the ML estimator of the βmax. The likelihood 

function of the saturated model evaluated at bmax is 

L(bmax;y). For the maximum value L(b;y) of the like-

lihood function of the model of interest, we have 

l(bmax;y) and l(b;y) as the associated log-likelihoods. 

Such that  

    𝐷 = 2 log(𝜆) = 2[𝑙(𝑏𝑚𝑎𝑥; 𝑦) − 𝑙(𝑏; 𝑦)] (11) 

is the deviance. The deviance for the Lognormal dis-

tribution model is given by  

𝐷 = 2 log(𝜆) =
1

𝜎2
∑ (ln (𝑦𝑖) − 𝜇̂)2𝑛

𝑖=1 .  (12) 

A likelihood ratio test (LRT) can be used to per-

form a hypothesis test on the parameters of interest. 

To define this test, let M1 be a GLM with deviance 

D1 and p parameters 𝛽1, … , 𝛽𝑝  , and let M2 be a GLM 

with deviance D2 and q<p parameters 𝛽1 , … . . , 𝛽𝑞. 

Let β be partitioned as 𝛽 = [𝛽(1), 𝛽(2)]
′
 where, 𝛽(1) =

𝛽1, … , 𝛽𝑞 and 𝛽(2) = 𝛽𝑞+1, … , 𝛽𝑝. Under the null hy-

pothesis  

    𝐻0: 𝛽(2) = 0 (𝑎𝑔𝑎𝑖𝑛𝑠𝑡 𝐻1: 𝛽(2) ≠ 0). (13) 

Let 𝑙(𝛽̂; 𝑦) be the maximum value of the log-like-

lihood function for M1 and let 𝑙(𝛽̃; 𝑦) be the value of 

the log-likelihood function for M2. The difference of 

deviances 

𝐷2 − 𝐷1 = 2[𝑙(𝛽̂; 𝑦) − 𝑙(𝛽; 𝑦)]~𝜒𝑝−𝑞
2 , (14) 

has an approximate χ2
 distribution with p-q degrees 

of freedom and is known as the Likelihood Ratio 

Test statistic of the null hypothesis. 

 

4. Results 

The data used in this paper is monthly NO2 emis-

sions per station, from Eskom, for a maximum pe-

riod of 108 months (between 2005 and 2014).  

4.1 Exploratory data analysis 

Before any data analysis can be performed, it is im-

portant to explore the data in order to know and un-

derstand how it is distributed. Graphical display of 

the data will be done by using the histogram, box 

plot and the quantile-quantile (QQ) plot for the NO2 

emission (in tons). From Figure 1, the histogram 

looks symmetric but is bimodal and hence is not nor-

mally distributed (Kolmogorov-Smirnov p-value 

<0.01). The box-plot shows that NO2 emission (in 

tons) has skewness and kurtosis (skewness value=-

0.11 and kurtosis= -0.94). The plot suggests that 

NO2 emission (in tons) is not Normally distributed 

since data points deviate from a 45° line towards the 

extremities on each graph. 

4.2 Efficiency of power stations 

Summary statistics on all the power stations used in 

modelling NO2 emission (in tons per month) are pre-

sented in Figure 2. 

The power station with the lowest average NO2 

emission is Komati with 1422.23 tons per month 

and the highest is Majuba with 10433.49 tons per 

month. Komati power station produced the lowest 

amount of electricity sent-out (in GWhs) on average 

per month and Matimba power station produced the 

highest. 

Hendrina is the oldest power station at 44 years 

and Majuba is the youngest power station at 18 

years in year 2014. 

 Since the efficiency of a power station cannot be 

measured by observing the amount of NO2 emission 

(in tons) alone, the relative nitrogen dioxide 

(tons/GWh) was calculated as follows 

𝑟𝑒𝑙𝑎𝑡𝑖𝑣𝑒 𝑒𝑚𝑖𝑠𝑠𝑖𝑜𝑛 (𝑟. 𝑒) =  
𝑁𝑂2 𝑒𝑚𝑖𝑠𝑠𝑖𝑜𝑛 𝑖𝑛 𝑡𝑜𝑛𝑠

𝑒𝑙𝑒𝑐𝑡𝑟𝑖𝑐𝑖𝑡𝑦 𝑠𝑒𝑛𝑡 𝑜𝑢𝑡 𝑖𝑛 𝐺𝑖𝑔𝑎𝑤𝑎𝑡𝑡𝑠 ℎ𝑜𝑢𝑟𝑠
 . (15) 

The power station with the lowest average rela-

tive NO2 emission (tons/GWhs) was taken to be the 

most efficient of the 13. Figure 3 shows Matimba  
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with 2.4177 tons/GWh to be the most efficient. This 

suggests that Matimba produces the highest amount 

of electricity sent out. Kriel is least efficient, with 

5.96708 tons/GWh. 

The most efficient month was July, with 4.47572 

tons/GWh of average relative NO2 emissions, and 

January the least efficient, with 4.647 tons/GWh. 

The month differences are, however, minimal. 

The joint fabric filter, electrostatic precipitators 

and flue gas condition were associated with the 

highest efficiency, with 4.27707 tons/GWh, and 

electrostatic precipitators are associated with the 

least efficiency, with an emission of 4.76371 

tons/GWh. 

4.3 Variable selection 

One of the aims of the paper is to find/select explan-

atory variables with a significant effect on NO2 emis-

sion at Eskom’s power plants. 

4.3.1 Test for collinearity (dependence) 
It is important to check for collinearity between some 

paired continuous explanatory variables before fit-

ting the data to a regression model. The presence of 

such a relationship would mean that having infor-

mation about one variable implies that we can pre-

dict the other. Thus, both would be trying to explain 

the same variability for the one response variable. 

Figure 1: Histogram and box plot for NO2 emission (tons). 

 

Figure 2: Left: Average NO2 emission (in tons/month); right: average electricity sent-out (in 

GWh/month). These graphical representations are given by power station per month. 
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(a)  (b) 

(c) 

Figure 3: Average relative NO2 emission (tons/Gigawatt-hour) by  

(a) power station, (b) month, and (c) filter. 

The variance inflated factors,  

𝑉𝐼𝐹𝑖 =
1

1−𝑅2  , 𝑖 = 1, … . , 𝑛 of the explanatory variables 

will be used to check for collinearity. A value of 

𝑉𝐼𝐹𝑖 > 10 raises concern. R
2
 is the coefficient of var-

iation. 

As an example, for two variables age (in years) 

and electricity sent out (in GWhs), we have 𝑉𝐼𝐹𝑖 =

1.71897 < 10 for each. Which means there is no sig-

nificant dependence between the two explanatory 

variables.  

4.3.2 The Lasso via hierarchical interactions  
variable selection 
Since no collinearity between variables in the da-

taset exists, one can start to select a model which 

includes only the explanatory variables which are 

significant in determining NO2 emission (in tons). In 

determining this, the Lasso (with hierarchical inter-

actions) is used. The information is summarised in 

Table 1. 

Table 1 shows all the coefficients generated by 

the variable selection process. The table includes the  

main effects and interaction effects. The first column 

shows the coefficients of the main effect, and the rest 

of the columns show the interaction effects. How-

ever, not all terms have interaction effects, a 0 indi-

cates such a pair with no interaction effect. The 

variables amount of electricity sent out (in GWhs), 

power station used, age of power station (in years), 

and interaction terms electricity and station, age and 

station, and station and filter were selected and will 

be used to produce GLM models for this paper. 

In determining the GLMs, a model consisting of 

only the main effects and without interaction terms 

will first be considered. The model will be referred to 

as model I, and is given by 

 𝑌𝑡𝑝𝑞 = 𝛽0 + 𝛽1𝑥𝑡𝑝 + 𝛽2𝐴𝑔𝑒𝑡 + 𝛾𝑝 + 𝛼𝑞 +  𝜀𝑡𝑝𝑞 . (16) 

The second model with both the main and inter-

action effects will also be considered and is given by 

𝑌𝒕𝒑𝒒 = 𝛽0 + 𝛽1𝑥𝒕𝒑𝒒 + 𝛽2𝐴𝑔𝑒𝑡 + 𝛾𝑝 + 𝛼𝑞 + 𝑥𝑡𝑝𝑞 ×

𝐴𝑔𝑒𝑡 + 𝑥𝑝𝑡 × 𝛾𝑝 + 𝐴𝑔𝑒𝑡 × 𝛾𝑝 + 𝛾𝑝 × 𝛼𝑞  +  𝜀𝑡𝑝𝑞 .  (17)



8    Journal of Energy in Southern Africa • Vol 34 No 1 • 2023 

Table 1: Variables selected using lasso via hierarchical interactions. 

  Main effects Electricity Age Filter:A Filter:B Filter:C Filter:D 

Electricity 3,950 - -0,004 0 0 0 0 

Age 8,731 -0,004 - 0 0 0 0 

Station:Arnot -824,742 0,092 -10,366 -41,888 18,235 13,907 9,746 

Station:Camden -1287,188 0,297 9,415 -13,754 8,857 4,529 0,368 

Station:Duvha -309,013 -0,109 -1,126 5,588 -7,021 2,798 -1,364 

Station:Grootvlei -990,525 0,286 -4,843 10,177 -20,790 7,387 3,225 

Station:Hendrina -289,045 -0,034 -15,204 -27,163 13,327 8,999 4,837 

Station:Kendal 1916,795 -0,828 -62,388 19,048 20,585 -51,729 12,096 

Station:Komati -792,174 0,218 -2,250 6,207 7,744 -13,205 -0,746 

Station:Kriel -657,643 0,331 45,654 -32,388 -30,851 102,580 -39,340 

Station:Lethabo 1422,043 0,298 -63,333 -7,894 -6,357 29,097 -14,846 

Station:Majuba 426,360 1,044 -47,633 71,010 -19,398 -23,725 -27,887 

Station:Matimba -1083,048 -1,884 57,082 46,900 48,437 -135,285 39,948 

Station:Matla -485,036 0,241 28,474 -21,966 -20,429 71,314 -28,918 

Station:Tutuka -1618,456 0,047 66,520 -13,876 -12,339 -16,667 42,882 

Filter:A -2,051 0 0 - - - - 

Filter:B -3,589 0 0 - - - - 

Filter:C 0,739 0 0 - - - - 

Filter:D 4,901 0 0 - - - - 

4.4 Generalised linear models 

Since the results in Figure 1 suggest that NO2 emis-

sion (in tons) is not normally distributed, and it is 

common to find data in the form of continuous 

measurements where the variance increases with the 

mean, the Lognormal GLM under model I (model 

without interaction terms) will be fitted.  

Similarly, to the model in Equation 16 above, the 

final model is given by the linear predictor: 

𝜂𝑡𝑝 = 𝛽0 + 𝛽1𝑥𝑝𝑡 + 𝛽2𝐴𝑔𝑒𝑡 + 𝛾𝑝,. (18) 

However, the explanatory variable, installed filter, 

will not be included in this model since it produced 

parameters with zero values. The model can thus be 

given as 

𝑌̂𝑡𝑝 = 6.138 + 0.0008𝑥𝑝𝑡 + 0.026𝐴𝑔𝑒𝑡 + 𝛾𝑝.  (19) 

The plot of residuals versus predicted values, and 

observed values versus predicted values are given in 

Figures 4 and 5, for the distribution model. Also in-

cluded in the figures are the plots for the Normal dis-

tribution model with identity link function model.  

The plots help in assessing the goodness of fit of the 

models. The first plots are on residuals versus pre 

dicted values (Figure 4), followed by the plots of the 

observed versus predicted values (Figure 5). 

A plot of observed against predicted values again 

shows the Normal distribution models seems to 

show an increasing variance with predicted values 

and hence the model is not very good. On the other 

hand, the Lognormal model seems to tame the var-

iance behaviour and hence gives the better fit. 

4.4.1 A model with more terms, including interac-
tion terms 
In the current section, a model with interaction terms 

is considered. The resultant model is called Model II 

and corresponds to the model in equation 2 above. 

The Normal model 
The final model includes the interaction effects be-

tween Electricity and Age, Electricity and Station, 

and Age and Station, and explanatory variables 

electricity sent out (in GWhs), age of power station 

(in years) and power station used.  

The Lognormal model 
Similarly, to the normal model above, the final 

model includes the interaction effects between Elec- 

tricity and Age, Electricity and Station and Age and 

station, and explanatory variables electricity sent out  
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Figure 4: Model I (Model with no interaction terms) residual plots for the  

Normal and Lognormal models, respectively. 

 

Figure 5: Model I (Model with no interaction terms) actual vs predicted values plots  

for the Normal and Lognormal models, respectively. 

(in GWh), age of power station (in years) and power 

station used. 

Thus Model II for the two distributions is given as: 

𝑌𝒕𝒑 = 𝛽0 + 𝛽1𝑥𝒕𝒑 + 𝛽2𝐴𝑔𝑒𝑡 + 𝛾𝑝 + 𝑥𝑡𝑝 × 𝐴𝑔𝑒𝑡 +

𝑥𝑝𝑡 × 𝛾𝑝 + 𝐴𝑔𝑒𝑡 × 𝛾𝑝 +  𝜀𝑡𝑝 .  (20) 

For the two models above, the age of the power 

station is included because of the inclusion of the 

upper order interaction term Age*station. Also, the 

interaction term between station and filter, and ex-

planatory variable filter are not included in the final 

model since they produced coefficients with values 

of zero. 

Figure 6 shows the plots of residuals against pre-

dicted values for the Normal and Lognormal distri-

butions under Model II. 

When the residuals are plotted against predicted 

values, the Normal model shows an increasing vari-

ance with predicted values and hence the model 

with these interaction terms is also not good. The 

Lognormal model seems to tame the variance beha- 

viour and hence gives the better fit. The results of 

the actual against predicted plots in Figure 7 confirm 

this observation. 

4.4.2 Link functions and the deviance 
In order to check for a good fit, the deviance was 

compared to the degrees of freedom. Below are the 

tables showing the model used, the deviance, de-

grees of freedom and the associated link functions 

for the Normal and Lognormal distributions models. 

Normal distribution  
The degrees of freedom for models I and II above 

are very small compared to their corresponding de-

viances, that is 

𝐷1𝑖 > 𝐷𝐹1 = 1281    and 𝐷2𝑖 > 𝐷𝐹2 = 1256,  (21) 

where D1i and D2i are the deviances for model I and 

model II, respectively (with i=1 and 2 representing 

the identity and log link functions, respectively). DF1 

and DF2 are the degrees of freedom for model I and 

model II, respectively.
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Figure 6: Model II (Model with interaction terms) residual plots for the Normal  

and Lognormal models respectively. 

 

Figure 7: Model II (Model with interaction terms) actual vs predicted values plots  

for the Normal and Lognormal models, respectively. 

This observation suggests that the Normal distri-

bution is not a good fit in modelling NO2 emissions 

from Eskom’s coal fuelled power stations. This ob-

servation was checked and confirmed by the use of 

residual plots and actual versus predicted plots. The 

identity link function gave the lowest deviance and 

was hence used. 

Lognormal model  
All the models from the Lognormal distribution 

show a good fit to the data since the deviance for 

each link function is smaller than the degrees of free-

dom, that is 

𝐷1𝑖 < 𝐷𝐹1 = 1281 and 𝐷2𝑖 < 𝐷𝐹2 = 1256, (22) 

where D1i and D2i are the deviances for model I and 

model II, respectively (with i=1 and 2 representing 

the identity and log link functions, respectively); and  

DF1 and DF2 are the degrees of freedom for model I 

and model II, respectively. 

Table 2: Deviances and the different link functions for Normal distribution. 

Model Degrees of 
freedom 

Link functions for the Normal models 

Identity Log Inverse 

Model I 

𝜂𝑡𝑝 = 𝛽0 + 𝛽1𝑥𝑝𝑡 + 𝛽2𝐴𝑔𝑒𝑡 + 𝛾𝑝 

 1281  591964285.93**  674526234.77 Model did not  

converge 

Model II 

𝜂𝑡𝑝 = 𝛽0 + 𝛽1𝑥𝑡𝑝 + 𝛽2𝐴𝑔𝑒𝑡 + 𝛾𝑝 +
𝑥𝑡𝑝𝐴𝑔𝑒𝑡 + 𝑥𝑡𝑝𝛾𝑝 + 𝐴𝑔𝑒𝑡𝛾𝑝 +  𝜀𝑡𝑝   

 1256 268150806.56** 284590908.65 Model did not  

converge 

** Chosen link function for the model. 
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Table 3: Deviance and link functions for Lognormal distribution. 

Model Degrees of 
freedom 

Link functions for the Lognormal 
model 

Identity Inverse Log 

Model 𝐈 

𝜼𝒕𝒑 = 𝜷𝟎 + 𝜷𝟏𝒙𝒑𝒕 + 𝜷𝟐𝑨𝒈𝒆𝒕 + 𝜸𝒑 

 1281  70.42**  80.31  75.77 

Model 𝐈𝐈 

𝜼𝒕𝒑 = 𝜷𝟎 + 𝜷𝟏𝒙𝒕𝒑 + 𝜷𝟐𝑨𝒈𝒆𝒕 + 𝜸𝒑 + 𝒙𝒕𝒑𝑨𝒈𝒆𝒕

+ 𝒙𝒕𝒑𝜸𝒑 + 𝑨𝒈𝒆𝒕𝜸𝒑 +  𝜺𝒕𝒑  

 1256 23.98** 28.05 26.09 

** Best link function for the model. 

Table 4. Lognormal model I (with no interaction terms): Analysis of ML parameter estimates. 

Parameter   DF Estimate Standard 
error 

Likelihood ratio 95% 
confidence limits 

Wald chi-
square 

Pr > ChiSq 

Intercept   1 6.1380 0.0964 5.9488 6.3271 4051.04 <.0001 

Electricity_Sentout   1 0.0008 0.0000 0.0008 0.0009 824.01 <.0001 

Age   1 0.0260 0.0026 0.0209 0.0312 98.42 <.0001 

Power_Station_Effect Arnot 1 0.3132 0.0610 0.1935 0.4329 26.34 <.0001 

Power_Station_Effect Camden 1 0.2735 0.0640 0.1480 0.3990 18.27 <.0001 

Power_Station_Effect Duvha 1 0.5529 0.0387 0.4769 0.6288 203.89 <.0001 

Power_Station_Effect Groot-

vlei 

1 0.1369 0.0670 0.0054 0.2684 4.17 0.0412 

Power_Station_Effect Hen-

drina 

1 0.3203 0.0647 0.1934 0.4473 24.48 <.0001 

Power_Station_Effect Kendal 1 0.5276 0.0321 0.4646 0.5906 269.93 <.0001 

Power_Station_Effect Komati 1 -0.1939 0.0745 -0.3400 -0.0479 6.78 0.0092 

Power_Station_Effect Kriel 1 0.8213 0.0491 0.7250 0.9176 279.81 <.0001 

Power_Station_Effect Lethabo 1 0.7189 0.0328 0.6545 0.7833 479.45 <.0001 

Power_Station_Effect Majuba 1 1.1764 0.0409 1.0963 1.2565 829.25 <.0001 

Power_Station_Effect Matla 1 0.6919 0.0392 0.6150 0.7689 311.02 <.0001 

Power_Station_Effect Tutuka 1 0.8252 0.0374 0.7518 0.8986 486.09 <.0001 

Power_Station_Effect Matimba 0 0.0000 0.0000 0.0000 0.0000 . . 

Scale   1 0.2331 0.0046 0.2244 0.2424     

 

Under the Lognormal model (for both model I 

and model II), the best fit is with the identity link 

function since it has the smallest deviance value of 

the three link functions. 

4.4.3 Parameter estimation 
Parameters were estimated using ML estimation 

with Matimba as the basis for comparison since it 

produced the lowest volumes of average relative 

NO2 emissions and hence was the most efficient. 

4.4.3.1 The Lognormal distribution with identity 
link function (model I detailed results) 
Model I: Model with explanatory variables electricity  

sent out (in GWhs), age of power station (in years) 

and power station used. Table 4 gives the parameter 

estimates of the best fitting model I using the 

Lognormal model as discussed above.  

Table 4 shows the ML parameter estimate of 

electricity sent out (in GWhs) of 0.0008. This means 

that an increase in electricity sent out by 1 Gigawatt-

hour will increase the log NO2 emission in log tons 

by 0.0008 (equivalent to 1.0008 tons). Other log 

tons estimates will be similarly interpreted.  

An estimate with a positive value for the plant 

coefficient means the associated power station vari-

able in the model has the effect to produce log NO2 

emission exceeding those of the basis, Matimba, by 
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the estimated value. A negative value means the ba-

sis (Matimba) effect exceeded the log NO2 emission 

of the associated power station by the value of the 

estimate. The lowest plant coefficient implies the 

lowest impact on emission (in log tons of NO2) hav-

ing taken account the other variables in the model. 

The highest plant coefficient implies the highest log 

NO2 emission impact.  

Komati, Grootvlei and Camden produce less 

electricity and hence are expected to produce less 

NO2 emissions. 

According to the power plant parameter esti-

mates in Table 4, Komati (with log emission level of 

0.1939 log tons less than Matimba) has the least im-

pact of the 13 power stations. It has the lowest pa-

rameter estimate (and the only estimate with a 

negative value). Majuba (with 1.1764 log tons more 

than Matimba) has the greatest impact in increasing 

emissions. The parameters are interpreted in the 

presence of other variables in Model I. 

4.4.3.2 The Lognormal distribution with Identity link 
function: Model II (model with interaction terms) 
The parameter estimates for the best Model II are 

given in Table 5. This model consists of the explan-

atory variables’ electricity sent out (in GWh), age of 

power station (in years) and power station used, and 

the interaction terms electricity*age, electricity*sta-

tion and age*station. In Table 5, the ML coefficient 

of electricity sent out (in GWhs) is 0.0007. This 

means that an increase in electricity sent out by 1 

GWh will increase the log NO2 emission in log tons 

by 0.0007 units (equivalent to 1.0007 tons). On the 

other hand, an increase of age by a year will increase 

log NO2 emission by 0.0298 log tons (equivalent to 

1.0302 tons).   

Table 5 gives the power station effect in the pres-

ence of other variables in the Lognormal model. Ac-

cording to the Lognormal Model II, the power 

stations Arnot, Hendrina, Camden, Grootvlei, Tu-

tuka, Komati and Kriel had less effect on emissions 

compared to Matimba since these had negative pa-

rameter estimates. This is happening when interac-

tion effects are allowed for. Arnot (with 0.9759 log 

tons less than Matimba) had the least effect from the 

13 power stations followed by Hendrina (with 

0.7919 log tons less than Matimba). Duvha, Matla, 

Majuba, Lethabo and Kendal had the greatest effect 

in increasing emissions compared to Matimba, with 

Kendal (emission level of 1.6753 log tons more than 

Matimba) contributing the greatest effect on emis-

sions of all the 13 power stations. 

 

Table 5: Lognormal model II: Analysis of ML parameter estimates. 

Parameter  DF Estimate Standard 

error 

Likelihood ratio 95% 

confidence limits 

Wald chi-

square 

Pr > ChiSq 

Intercept   1 6.9384 0.4199 6.1148 7.7620 273.05 <.0001 

electricity   1 0.0007 0.0002 0.0004 0.0010 17.57 <.0001 

Age   1 0.0298 0.0167 -0.0031 0.0626 3.16 0.0754 

station Arnot 1 -0.9759 0.3318 -1.6267 -0.3251 8.65 0.0033 

station Camden 1 -0.6835 0.4174 -1.5021 0.1351 2.68 0.1015 

station Duvha 1 0.0676 0.3965 -0.7101 0.8453 0.03 0.8646 

station Grootvlei 1 -0.6122 0.6821 -1.9502 0.7258 0.81 0.3695 

station Hendrina 1 -0.7919 0.4624 -1.6989 0.1150 2.93 0.0868 

station Kendal 1 1.6753 0.2728 1.1403 2.2104 37.72 <.0001 

station Komati 1 -0.2227 1.0517 -2.2854 1.8401 0.04 0.8323 

station Kriel 1 -0.0715 0.3220 -0.7029 0.5600 0.05 0.8244 

station Lethabo 1 1.3508 0.2938 0.7746 1.9270 21.14 <.0001 

station Majuba 1 0.8762 0.3054 0.2772 1.4752 8.23 0.0041 

station Matla 1 0.1379 0.3545 -0.5575 0.8332 0.15 0.6973 

station Tutuka 1 -0.5523 0.2839 -1.1091 0.0046 3.78 0.0517 

station Matimba 0 0.0000 0.0000 0.0000 0.0000 . . 

electricity*Age   1 -0.0000 0.0000 -0.0000 0.0000 3.08 0.0791 

electricity*station Arnot 1 0.0007 0.0002 0.0004 0.0010 21.05 <.0001 

electricity*station Camden 1 0.0032 0.0002 0.0028 0.0035 384.35 <.0001 
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Parameter  DF Estimate Standard 

error 

Likelihood ratio 95% 

confidence limits 

Wald chi-

square 

Pr > ChiSq 

electricity*station Duvha 1 0.0002 0.0001 0.0000 0.0004 4.74 0.0295 

electricity*station Grootvlei 1 0.0024 0.0002 0.0020 0.0029 128.86 <.0001 

electricity*station Hendrina 1 0.0009 0.0002 0.0005 0.0012 19.75 <.0001 

electricity*station Kendal 1 -0.0001 0.0001 -0.0003 0.0001 0.93 0.3355 

electricity*station Komati 1 0.0051 0.0003 0.0044 0.0057 209.71 <.0001 

electricity*station Kriel 1 0.0004 0.0001 0.0002 0.0006 12.40 0.0004 

electricity*station Lethabo 1 0.0000 0.0001 -0.0002 0.0002 0.00 0.9677 

electricity*station Majuba 1 -0.0000 0.0001 -0.0002 0.0002 0.00 0.9792 

electricity*station Matla 1 0.0002 0.0001 -0.0000 0.0004 2.38 0.1232 

electricity*station Tutuka 1 0.0001 0.0001 -0.0001 0.0003 1.83 0.1755 

electricity*station Matimba 0 0.0000 0.0000 0.0000 0.0000 . . 

Age*station Arnot 1 0.0056 0.0117 -0.0174 0.0285 0.23 0.6345 

Age*station Camden 1 -0.0431 0.0161 -0.0746 -0.0116 7.19 0.0073 

Age*station Duvha 1 -0.0002 0.0102 -0.0201 0.0197 0.00 0.9855 

Age*station Grootvlei 1 -0.0328 0.0260 -0.0839 0.0182 1.59 0.2071 

Age*station Hendrina 1 -0.0023 0.0129 -0.0275 0.0230 0.03 0.8599 

Age*station Kendal 1 -0.0498 0.0073 -0.0642 -0.0355 46.59 <.0001 

Age*station Komati 1 -0.0575 0.0340 -0.1242 0.0092 2.86 0.0911 

Age*station Kriel 1 0.0043 0.0098 -0.0149 0.0236 0.20 0.6576 

Age*station Lethabo 1 -0.0292 0.0077 -0.0443 -0.0142 14.49 0.0001 

Age*station Majuba 1 -0.0002 0.0087 -0.0173 0.0169 0.00 0.9852 

Age*station Matla 1 0.0075 0.0087 -0.0096 0.0245 0.73 0.3919 

Age*station Tutuka 1 0.0404 0.0091 0.0225 0.0582 19.74 <.0001 

Age*station Matimba 0 0.0000 0.0000 0.0000 0.0000 . . 

Scale   1 0.1360 0.0027 0.1310 0.1414   

 

Since the interaction of electricity sent out (in 

GWh) and age produced a very small value of the 

estimate such that the software package used cannot 

display it but its sign only, we can only conclude that 

the joint increase in electricity sent out by 1 GWh and 

increase in age by a year will decrease the log NO2 

emission in log tons by a value less than 0.0001 

units. 

Taking a closer look at the interaction term  

electricity*station, the least effect from the 13 power 

stations comes from the interaction term electric-

ity*Kendal (with only 0.0001 log tons less than elec-

tricity*Matimba) and the interaction of the electricity 

variable with Komati power station has the greatest 

effect to increase emissions significantly (with 

0.0051 more log tons when compared to electric-

ity*Matimba). 

Komati, Grootvlei and Camden produce less elec- 

tricity and hence are expected to produce less NO2 

emissions. However, the emissions are dispropor-

tionately higher. 

For the effect age*station, Komati, Kendal, Cam-

den, Grootvlei, Lethabo, Hendrina, Duvha and Ma-

juba have interaction with age coefficients to reduce 

emission impact since they all have negative inter-

action coefficients when compared with the basis, 

age*Matimba. Age interaction with, Kriel, Arnot, 

Matla and Tutuka contribute to increasing emissions 

since the coefficients are all positive. The interaction 

term age*station has Komati (with 0.0575 log tons 

less than age*Matimba) leading to the least impact 

on emission. Age interaction with Tutuka leads to 

the greatest emission impact (with 0.0404 more log 

tons compared to age*Matimba). Generally, the 

older plants give more emissions. Tutuka produces 

more emissions than expected given its age. 
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4.4.4 Criteria for assessing goodness of fit: Select-
ing the best model. 
One can now determine if the addition of interaction 

terms produced a better fit or not when compared 

to the model with less terms (no interaction effects). 

Lognormal model with identity link function 
Let D1 and D2 be the deviances for models I and II, 

respectively, such that 

𝐷1 = 70.4203 with  𝑑𝑒𝑔𝑟𝑒𝑒𝑠 𝑜𝑓 𝑓𝑟𝑒𝑒𝑑𝑜𝑚 = 1281 

 (23) 

and 

𝐷2 = 23.9824 with  𝑑𝑒𝑔𝑟𝑒𝑒𝑠 𝑜𝑓 𝑓𝑟𝑒𝑒𝑑𝑜𝑚 = 1256. 
 (24) 

Now, under the null hypothesis given as 

𝐻0: 𝛽(2) = 0 𝑎𝑔𝑎𝑖𝑛𝑠𝑡 𝐻1: 𝛽(2) ≠ 0, (25) 

we have 

 𝐷1 − 𝐷2 = 70.4203 − 23.9824= 46.4379>
 37.65 = 𝜒1281−1256

2 = 𝜒25
2 . (26) 

This suggests that the null hypothesis 𝐻0: 𝛽(2) = 0 
will be rejected at α=0.05 and we can conclude that 

the addition of the interaction terms is significant in 

predicting the emission of NO2 and thus model II can 

be used in predicting NO2 emission and can be re-

garded as the best fit of the two. 

4.4.5 Evaluating the predictive models (RMSE, 
MAPE and MAE) 
In addition to the residuals plots above, prediction 

evaluation metrices are presented to confirm the fit-

ting model. Table 6 shows the root mean squared 

error (RMSE), mean absolute percentage error 

(MAPE) and the mean absolute error (MAE) for the 

two models, Normal and Lognormal distributions. 

From Table 6, the MAPE for the Lognormal 

model (with a value of 0.86%) is lower than that of 

the Normal distribution (with a value 5.34%). This 

suggests the Lognormal model is a better fit com-

pared to the Normal model. This is supported by the 

results of the RMSE and MAE i.e. for the Lognormal 

model II, MAE has a lower value of 0.0653 log tons 

(equivalent to 1.0675 tons) compared to 296.1763 

tons of the Normal distribution model II. 

5. Discussion 

In a classical regression model, the variance is as-

sumed a constant and the data is assumed to be nor-

mally distributed. However, in practice, it is com-

mon to find data in continuous measurements 

where the variance increases with the mean (McCul-

lagh and Nelder, 1989). In such cases, a Lognormal 

GLM could be used. Diagnostic plots suggest an in-

creasing variance with an increasing mean for this 

data set. The data set obeys the constant coefficient 

of variation assumption. 

The results of the linear regression model suggest 

that NO2 emission data is not Normally distributed. 

This is supported by the results from the histogram, 

box plot. The Lognormal distribution models are 

also fitted to the data. The best link function is the 

identity link  as evidenced by the smallest deviance 

compared to the log and inverse link functions. In-

termediate results in comparisons of the Lognormal 

model with identity link function and linear regres-

sion model, using the residuals plots and actual ver-

sus predicted plot, indicate that, the Lognormal 

model is better as it produced plots that showed im-

proved variance behaviour that  is now constant. It 

can be concluded that, the GLM model is a better 

model than the linear regression model in explaining 

and predicting NO2 emission data from Eskom’s 

coal-fuelled power stations.  

The identification of significant variables contrib-

uting to high emissions is essential in monitoring and 

managing emissions. The interaction terms electric-

ity*station, age*station and variables electricity sent 

out (in GWhs), age of power station (in years), 

power station used, can be used in describing and 

predicting NO2 emissions from Eskom’s coal fuelled 

power stations. 

 

 
Table 6. Prediction evaluation metrices for the Normal and Lognormal models  

with interaction terms (Model II). 

Distribution model II RMSE MAPE MAE 

Normal 454.8697 0.0534 296.1763 

Lognormal 0.1360 0.0086 0.0653 
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To enhance research on NO2 emissions from 

Eskom coal fuelled power stations, it would be ben-

eficial to add the amount and quality of coal used in 

the generation of electricity as some of the explana-

tory variables. For future studies, the researchers 

would like to compare two GLM distributions mod-

els that obey the constant coefficient of variation as-

sumptions namely, Lognormal and Gamma models.  

6. Conclusion 

This paper discusses the use of GLMs in the model-

ling of emission data from the 13 Eskom’s coal-

fuelled power stations. GLM distribution models, 

namely the Normal and the Lognormal, were con-

structed and compared. Each distribution model 

was divided into two, one without (Model I) and the 

other with interaction terms (Model II), respectively, 

by making use of group-lasso interaction network 

(glinternet) variable selection method. This was 

done to determine if addition of interaction effects in 

the models is significant or not. The deviance was 

then used to determine the best link function be-

tween the identity, log and inverse for Model I and 

Model II. The identity link function was deemed the 

most appropriate for the given dataset. In the case 

of the Normal GLM models, the deviance had val-

ues that were very large compared to their corre-

sponding degrees of freedom, suggesting that the 

Normal distribution models (and thus the linear re-

gression models) are not a good fit for the data. This 

is expected as it is common to have continuous data, 

including emission data, that does not obey the Nor-

mality assumption (McCullagh and Nelder, 1989). 

We can, therefore, conclude that the linear regres-

sion model is not a good fit for the NO2 emission 

data. For the Lognormal distribution model, the ad-

dition of interaction terms was significant. The main 

contribution of this paper is to demonstrate the 

GLMs’ flexibility offered by the link functions to 

transform the data compared to the limited classical 

linear regression when modelling NO2 emission data 

(Nelder and Wedderburn, 1972). The modelling 

helps in coming up with better models to explain 

Eskom emission data, such as the NO2 emission 

data. The study is useful to power utilities such as 

Eskom in the monitoring and management of emis-

sions to meet the regulations and thus manage the 

emission to minimise the exposure of high NO2 

emissions to humans and the environment. 
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