Design and application of a distributed generation hosting capacity algorithm

Authors

DOI:

https://doi.org/10.17159/2413-3051/2021/v32i3a10364

Abstract

Distribution networks in Southern Africa and elsewhere are witnessing an unprecedented growth of consumer-side distributed generation (DG) courtesy of governmental interventions to maximise the utilisation of renewable energy resources through low-carbon grid-edge technologies. To deal with the increasing adoption of consumer-side DG, distribution network operators need to conduct technical studies to foster an understanding of the benefits and impacts of DG and the hosting capacity (HC) of existing distribution networks. This will aid the implementation of measures to manage grid exports. Using a distribution network in Namibia as a case study, this paper presents an algorithm for assessing the HC of consumer-side DG in existing distribution networks that are situated in areas anticipating high and uniform uptake of DG. The algorithm is a hybrid of deterministic and probabilistic methods. The uniqueness of the algorithm is the concept of calculating monthly HC. The algorithm was tested on a real existing residential distribution network and the results confirmed that HC varies monthly. However, the practical implementation of monthly HC requires upgrades to existing inverter technology, which currently contains a single export limit functionality. This opens the possibility to drive innovation in the inverter technology to develop a date-based multiple export limit functionality.

Downloads

Download data is not yet available.

References

Abad, M.S.S., Verbic, G., Chapman, A. & Ma, J. 2017. A linear method for determining the hosting capacity of radial distribution systems. In 2017 Australasian Universities Power Engineering Conference (AUPEC). V. November 2. Melbourne: IEEE. 1–6. DOI: 10.1109/AUPEC.2017.8282428. DOI: https://doi.org/10.1109/AUPEC.2017.8282428

Abad, M.S.S., Ma, J., Zhang, D., Ahmadyar, A.S. & Marzooghi, H. 2018. Probabilistic assessment of hosting capacity in radial distribution systems. IEEE Transactions on Sustainable Energy. 9(4):1935–1947.

DOI: 10.1109/TSTE.2018.2819201. DOI: https://doi.org/10.1109/TSTE.2018.2819201

Ackermann, T., Andersson, G. & Söder, L. 2001. Distributed generation: a definition. Electric Power Systems Research. 57(3):195–204. DOI: 10.1016/S0378-7796(01)00101-8. DOI: https://doi.org/10.1016/S0378-7796(01)00101-8

Ahmadi, A.R., Manandhar, T., Barros, J., Bernardo, M. & Georgiopoulos, S. 2017. UK power networks’ experience of managing flexible distributed generation from planning to operation. In 24th International Conference & Exhibition on Electricity Distribution (CIRED). V. 2017. London, UK: IET. 2032–2036. DOI: 10.1049/oap-cired.2017.1085. DOI: https://doi.org/10.1049/oap-cired.2017.1085

Al-Saadi, H., Zivanovic, R. & Al-Sarawi, S. 2017. Probabilistic hosting capacity for active distribution networks. IEEE Transactions on Industrial Informatics. 13(5):2519–2532. DOI: 10.1109/TII.2017.2698505. DOI: https://doi.org/10.1109/TII.2017.2698505

Altin, M., Oguz, E.U., Bizkevelci, E. & Simsek, B. 2015. Distributed generation hosting capacity calculation of MV distribution feeders in Turkey. In IEEE PES Innovative Smart Grid Technologies Conference Europe. V. 2015-Janua. Istanbul, Turkey: IEEE. 1–7. DOI: 10.1109/ISGTEurope.2014.7028776. DOI: https://doi.org/10.1109/ISGTEurope.2014.7028776

Athari, M.H., Wang, Z. & Eylas, S.H. 2017. Time-series analysis of photovoltaic distributed generation impacts on a local distributed network. In 12th IEEE PES PowerTech Conference. Manchester, UK: IEEE. 1–6.

DOI: 10.1109/PTC.2017.7980908. DOI: https://doi.org/10.1109/PTC.2017.7980908

Azibek, B., Abukhan, A., Nunna, H.S.V.S.K., Mukatov, B., Kamalasadan, S. & Doolla, S. 2020. Hosting capacity enhancement in low voltage distribution networks: challenges and solutions. In 2020 IEEE International Conference on Power Electronics, Smart Grid and Renewable Energy (PESGRE2020). Cochin, India: IEEE. 1–6.

DOI: 10.1109/PESGRE45664.2020.9070466. DOI: https://doi.org/10.1109/PESGRE45664.2020.9070466

Aziz, T. & Ketjoy, N. 2017. PV penetration limits in low voltage networks and voltage variations. IEEE Access. 5:16784–16792. DOI: 10.1109/ACCESS.2017.2747086. DOI: https://doi.org/10.1109/ACCESS.2017.2747086

Bajaj, M. & Singh, A.K. 2021. Hosting capacity enhancement of renewable-based distributed generation in harmonically polluted distribution systems using passive harmonic filtering. Sustainable Energy Technologies and Assessments. 44:101030. DOI: 10.1016/j.seta.2021.101030. DOI: https://doi.org/10.1016/j.seta.2021.101030

Bajaj, M., Sharma, N.K., Pushkarna, M., Malik, H., Alotaibi, M.A. & Almutairi, A. 2021. Optimal design of passive power filter using multi-objective pareto-based firefly algorithm and analysis under background and load-side’s nonlinearity. IEEE Access. 9:22724–22744. DOI: 10.1109/ACCESS.2021.3055774. DOI: https://doi.org/10.1109/ACCESS.2021.3055774

Ballanti, A. & Ochoa, L.F. 2016. On the integrated PV hosting capacity of MV and LV distribution networks. In 2015 IEEE PES Innovative Smart Grid Technologies Latin America (ISGT LATAM). Montevideo, Uruguay: IEEE. 1–5.

DOI: 10.1109/ISGT-LA.2015.7381183. DOI: https://doi.org/10.1109/ISGT-LA.2015.7381183

Banfield, B., Ciufo, P. & Robinson, D.A. 2018. The technical and economic benefits of utility sponsored renewable energy integration. In 2017 Australasian Universities Power Engineering Conference (AUPEC). Melbourne, VIC, Australia: IEEE. 1–6. DOI: 10.1109/AUPEC.2017.8282489. DOI: https://doi.org/10.1109/AUPEC.2017.8282489

Celvakumaran, P., Ramachandaramurthy, V.K. & Ekanayake, J. 2019. Assessment of net energy metering on distribution network losses. In 2019 IEEE International Conference on Automatic Control and Intelligent Systems (I2CACIS). Selangor, Malaysia: IEEE. 1–6. DOI: 10.1109/I2CACIS.2019.8825071. DOI: https://doi.org/10.1109/I2CACIS.2019.8825071

Chihota, M.J. & Bekker, B. 2020. Modelling and simulation of uncertainty in the placement of distributed energy resources for planning applications. In 2020 International Conference on Probabilistic Methods Applied to Power Systems, PMAPS 2020 - Proceedings. Liege, Belgium: IEEE. 1–6. DOI: 10.1109/PMAPS47429.2020.9183657. DOI: https://doi.org/10.1109/PMAPS47429.2020.9183657

Chiradeja, P. 2005. Benefit of distributed generation: a line loss reduction analysis. In 2005 IEEE/PES Transmission & Distribution Conference & Exposition: Asia and Pacific. V. 2005. Dalian, China: IEEE. 1–5.

DOI: 10.1109/TDC.2005.1546964. DOI: https://doi.org/10.1109/TDC.2005.1546964

Chowdhury, S., Crossley, P. & Chowdhury, S.P. 2009. Microgrids and active distribution networks. 1st ed. London: Institution of Engineering and Technology. DOI: 10.1049/PBRN006E. DOI: https://doi.org/10.1049/PBRN006E

Ebe, F., Idlbi, B., Morris, J., Heilscher, G. & Meier, F. 2017. Evaluation of PV hosting capacity of distribuion grids considering a solar roof potential analysis - comparison of different algorithms. In 2017 IEEE Manchester PowerTech, Powertech 2017. Manchester, UK: IEEE. 1–6. DOI: 10.1109/PTC.2017.7981017. DOI: https://doi.org/10.1109/PTC.2017.7981017

El-Khattam, W. & Salama, M.M.A. 2004. Distributed generation technologies, definitions and benefits. Electric Power Systems Research;. 71(2):119–128. DOI: 10.1016/j.epsr.2004.01.006. DOI: https://doi.org/10.1016/j.epsr.2004.01.006

Electricity Control Board. 2009. Standard specification for medium and low voltage electricity distribution works: part B-07 - service connections. Windhoek. Available: https://www.ecb.org.na/images/docs/Rules_and_Regulations/PART B-07 - SERVICE CONNECTIONS_rev4_15Oct09.pdf.

Electricity Control Board. 2016. Net metering rules: electricity act, 2007. Windhoek. Available: https://www.ecb.org.na/images/docs/Noticeboard/Gazetted Net metering Rules.pdf.

Energy Networks Association. 2014. Distributed generation connection guide: a guide for connecting generation to the distribution network in multiple premises that falls under G83/2. London. Available: www.nie.co.uk.

Energy Networks Association. 2016. Engineering recommendation G100 Issue 1 2016 - technical guidance for customer export limiting schemes. London. Available: www.energynetworks.org.

Energy Networks Association. 2018. Engineering recommendation G98: requirements for the connection of fully type tested micro-generators (up to and including 16 A per phase) in parallel with public low voltage distribution networks. London. Available: https://www.energynetworks.org/electricity/engineering/distributed-generation/engineering-recommendation-g98.html.

Energy Networks Association. 2019. Engineering recommendation G99 - requirements for the connection of generation equipment in parallel with public distribution networks on or after 27 April 2019. London. Available: https://www.energynetworks.org/electricity/engineering/distributed-generation/engineering-recommendation-g99.html.

Energy Networks Australia. 2019. National distributed energy resources grid connection guidelines technical guidelines for basic micro EG connections. Melbourne VIC 3000. Available: www.energynetworks.com.au.

Eskom. 2003. NRS 048-2: Electricity supply - quality of supply part 2 : voltage characteristics , compatibility levels , limits and assessment methods. Johannesburg: Technology Standardization Department (TSD). Available: www.stansa.co.za.

Eskom. 2007. NRS 034 - Electricity distribution : guidelines for the provision of electricity distribution networks in residential areas. part 1, planning and design of distribution networks. Johannesburg: Technology Standardization Department (TSD).

Eskom. 2010. NRS 097-02-03 - Grid interconnection of embedded generation. part 2, small-scale embedded generation. section 3, simplified utility connection criteria for low-voltage connected generators. Johannesburg: The Standardization Section. Available: http://www.sabs.co.za.

Estorque, L.K.L. & Pedrasa, M.A.A. 2016. Utility-scale DG planning using location-specific hosting capacity analysis. In 2016 IEEE Innovative Smart Grid Technologies - Asia (ISGT-Asia). Melbourne, VIC, Australia: IEEE. 1–6.

DOI: 10.1109/ISGT-Asia.2016.7796519. DOI: https://doi.org/10.1109/ISGT-Asia.2016.7796519

Fang, D., Zou, M., Harrison, G., Djokic, S.Z., Ndawula, M.B., Xu, X., Hernando-Gil, I. & Gunda, J. 2020. Deterministic and probabilistic assessment of distribution network hosting capacity for wind-based renewable generation. In 2020 International Conference on Probabilistic Methods Applied to Power Systems, PMAPS 2020 - Proceedings. Liege, Belgium: IEEE. 1–6. DOI: 10.1109/PMAPS47429.2020.9183525. DOI: https://doi.org/10.1109/PMAPS47429.2020.9183525

Fasina, E.T., Hassan, A.S. & Cipcigan, L.M. 2015. Impact of localised energy resources on electric power distribution systems. In 2015 50th International Universities Power Engineering Conference (UPEC). Stoke on Trent, UK: IEEE. 1–5. DOI: 10.1109/UPEC.2015.7339793. DOI: https://doi.org/10.1109/UPEC.2015.7339793

Gabriels, G.H., Windapo, M.O., Oyedokun, D.T.O. & Ruggeri, S. 2020. Proposed framework for integration of optimal current injection and multi-agent control of the LV distribution network. In 6th IEEE International Energy Conference, ENERGYCon 2020. DOI: 10.1109/ENERGYCon48941.2020.9236499. DOI: https://doi.org/10.1109/ENERGYCon48941.2020.9236499

Gabriels, G.H., Oyedokun, D.T.O. & Ruggeri, S. 2020. Realtime thévenin equivalent impedance at a PCC in the Italian power grid. In 2020 International SAUPEC/RobMech/PRASA Conference.

DOI: 10.1109/SAUPEC/RobMech/PRASA48453.2020.9040924. DOI: https://doi.org/10.1109/SAUPEC/RobMech/PRASA48453.2020.9040924

International Finance Corporation. 2020. Regulatory and tariff review for distributed generation in the commercial and industrial sectors in Southern Africa. Washington, DC, USA. Available: https://www.ifc.org/wps/wcm/connect/090c58a2-2b98-482e-8c6d-b5931ed793e2/202006-Regulatory-Tariff-Review-Southern-Africa.pdf?MOD=AJPERES&CVID=nbDqlVa.

Interstate Renewable Energy Council. 2005. IREC model net-metering rules 2005. United States of America: Interstate Renewable Energy Council (IREC). Available: http://www.irecusa.org/index.php?id=88.

Interstate Renewable Energy Council. 2009. IREC model net-metering rules 2009. United states of America: Interstate Renewable Energy Council (IREC). Available: http://www.irecusa.org/NMmodel09.

Ismael, S.M., Abdel Aleem, S.H.E., Abdelaziz, A.Y. & Zobaa, A.F. 2020. Distributed generation in deregulated energy markets and probabilistic hosting capacity decision-making challenges. In Decision Making Applications in Modern Power Systems. 2020th ed. S.H.E.A. Aleem, A. Almoataz Youssef, A.F. Zobaa, & R. Bansal, Eds. 125 London Wall, London EC2Y 5AS, United Kingdom: Elsevier. 223–246. DOI: 10.1016/b978-0-12-816445-7.00009-8. DOI: https://doi.org/10.1016/B978-0-12-816445-7.00009-8

Jain, A.K., Horowitz, K., Ding, F., Gensollen, N., Mather, B. & Palmintier, B. 2019. Quasi-static time-series PV hosting capacity methodology and metrics. In 2019 IEEE Power & Energy Society Innovative Smart Grid Technologies Conference (ISGT). Washington, DC, USA: IEEE. 1–5. DOI: 10.1109/ISGT.2019.8791569. DOI: https://doi.org/10.1109/ISGT.2019.8791569

Khamees, A., Badra, N. & Abdelaziz, A. 2016. Optimal power flow methods: a comprehensive survey. International Electrical Engineering Journal (IEEJ). 7(4):2228–2239. Available: http://www.ieejournal.com/wp-content/uploads/Volume/Vol 7 No 4/Optimal Power Flow Methods A Survey.pdf.

Kumar, S. & Kumar, R. 2017. Review of the distributed generation concept using PSO: attempt of unification. International Journal of Research Review in Engineering Science & Technology. 6(1):5.

DOI: https://doi.org/10.24084/repqj03.275. DOI: https://doi.org/10.24084/repqj03.275

Mahmud, M.A., Hossain, M.J. & Pota, H.R. 2011. Analysis of voltage rise effect on distribution network with distributed generation. In IFAC Proceedings Volumes. V. 44. 14796–14801. DOI: 10.3182/20110828-6-IT-1002.01305. DOI: https://doi.org/10.3182/20110828-6-IT-1002.01305

Meddeb, A., Sahbeni, N., Jmii, H. & Chebbi, S. 2018. Impact of distributed generation on the protection system in Tunisian distribution network. In 2018 15th International Multi-Conference on Systems, Signals and Devices, SSD 2018. Hammamet, Tunisia: IEEE. 514–520. DOI: 10.1109/SSD.2018.8570584. DOI: https://doi.org/10.1109/SSD.2018.8570584

Mulenga, E., Bollen, M.H.J. & Etherden, N. 2020. A review of hosting capacity quantification methods for photovoltaics in low-voltage distribution grids. International Journal of Electrical Power and Energy Systems. 115(2020):1–13. DOI: 10.1016/j.ijepes.2019.105445. DOI: https://doi.org/10.1016/j.ijepes.2019.105445

Navarro, B.B. & Navarro, M.M. 2017. A comprehensive solar PV hosting capacity in MV and LV radial distribution networks. In 2017 IEEE PES Innovative Smart Grid Technologies Conference Europe (ISGT-Europe). V. 2018-Janua. Torino, Italy: IEEE. 1–6. DOI: 10.1109/ISGTEurope.2017.8260210. DOI: https://doi.org/10.1109/ISGTEurope.2017.8260210

Ng, C.H., Lie, T.T. & Goel, L. 2007. Impacts of distributed Generation on system reliability in competitive electricity markets. In 8th International Power Engineering Conference, IPEC 2007. Singapore: IEEE. 735–740. Available: https://ieeexplore.ieee.org/document/4510123.

Palani, K., Kota, R., Azad, A.P. & Arya, V. 2017. Blue skies: a methodology for data-driven clear sky modelling. In Proceedings of the Twenty-Sixth International Joint Conference on Artificial Intelligence (IJCAI-17). USA: International Joint Conferences on Artificial Intelligence Organization (IJCAI). 3777–3783.

DOI: 10.24963/ijcai.2017/528. DOI: https://doi.org/10.24963/ijcai.2017/528

Pratihar, D.K. 2012. Traditional vs non-traditional optimization tools. In Computational Optimization and Applications. New Delhi: Narosa Publishing House Pvt. Ltd. 25–33.

Reno, M.J., Hansen, C.W. & Stein, J.S. 2012. Global horizontal irradiance clear sky models: implementation and analysis. Livermore, California. DOI: 10.2172/1039404. DOI: https://doi.org/10.2172/1039404

Ricciardi, T.R., Petrou, K., Franco, J.F. & Ochoa, L.F. 2019. Defining customer export limits in PV-rich low voltage networks. IEEE Transactions on Power Systems. 34(1):87–97. DOI: 10.1109/TPWRS.2018.2853740. DOI: https://doi.org/10.1109/TPWRS.2018.2853740

SA Power Networks. 2019. Technical standard - TS129: small EG connections-capacity not exceeding 30kW. Keswick, South Australia. Available: http://www.sapowernetworks.com.au/centric/industry/contractors_and_designers/technical_standards.jsp.

Seguin, R., Woyak, J., Costyk, D., Hambrick, J. & Mather, B. 2016. High-penetration PV integration handbook for distribution engineers. Denver West Parkway, Golden. DOI: 10.2172/1235905. DOI: https://doi.org/10.2172/1235905

Short, T.A. 2018. Electric Power Distribution Handbook. 2nd ed. Boca Raton, Florida: CRC Press LLC.

DOI: 10.1201/b16747. DOI: https://doi.org/10.1201/b16747

Šipoš, M., Klaić, Z., Fekete, K. & Stojkov, M. 2018. Review of non-traditional optimization methods for allocation of distributed generation and energy storage in distribution system. Tehnicki vjesnik. 25(1):294–301.

DOI: 10.17559/TV-20170703135143. DOI: https://doi.org/10.17559/TV-20170703135143

Solar Electric Power Association. 2013. Ratemaking, solar value and solar net energy metering - a primer. Washington. Available: https://sepapower.org/resource/ratemaking-solar-value-and-net-energy-metering-primer/.

Stewart, E., MacPherson, J., Vasilic, S., Nakafuji, D. & Aukai, T. 2013. Analysis of high-penetration levels of photovoltaics into the distribution grid on oahu, hawaii: detailed analysis of heco feeder wf1. Colorado. Available: http://www.osti.gov/bridge. DOI: https://doi.org/10.2172/1083363

Venter, G. 2010. Review of optimization techniques. In Encyclopedia of Aerospace Engineering.

DOI: 10.1002/9780470686652.eae495. DOI: https://doi.org/10.1002/9780470686652.eae495

Viral, R. & Khatod, D.K. 2012. Optimal planning of distributed generation systems in distribution system: a review. Renewable and Sustainable Energy Reviews. 16(7):5146–5165. DOI: 10.1016/j.rser.2012.05.020. DOI: https://doi.org/10.1016/j.rser.2012.05.020

Yang, D., Jirutitijaroen, P. & Walsh, W.M. 2012. The estimation of clear sky global horizontal irradiance at the equator. Energy Procedia 2. 25(2012):141–148. DOI: 10.1016/j.egypro.2012.07.019. DOI: https://doi.org/10.1016/j.egypro.2012.07.019

Zhao, B., Wang, C. & Zhang, X. 2017. Grid-integrated and standalone photovoltaic distributed generation systems - analysis, design, and control. 111 River Street, Hoboken, NJ07030, USA: John Wiley & Son.

DOI: 10.1002/9781119187349. DOI: https://doi.org/10.1002/9781119187349

Image by jakubekr from Pixabay

Downloads

Published

2021-09-19

How to Cite

Sam, M. A., Oyedokun, D. T. O., & Akpeji, K. (2021). Design and application of a distributed generation hosting capacity algorithm. Journal of Energy in Southern Africa, 32(3), 1–13. https://doi.org/10.17159/2413-3051/2021/v32i3a10364