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Abstract 

Dimensionality poses a challenge in developing quality predictive models. Often when modelling solar irra-
diance (SI), many covariates are considered. Training such data has several disadvantages. This study sought 
to identify the best variable embedded selection method for different location and time horizon combinations 
from Southern Africa solar irradiance data. It introduced new variable selection methods into solar irradiation 
studies, namely penalised quantile regression (PQR), regularised random forests (RRF), and quantile regres-
sion forest (QRF). Stability analysis, performance and accuracy metric evaluations were used to compare 
them with the common lasso, elastic and ridge regression methods. The QRF model performed best in all 
locations followed by the shrinkage methods on hourly data. However, it was found that QRF is not sensitive 
to associations through correlations, thereby ignoring the relevance of variables while focusing on im-
portance. Among the shrinkage methods, the lasso performed best in only one location. On the 24-hour 
horizon, elastic net dominated the performances among the shrinkage methods, but QRF was best in three 
locations of the six considered. Results confirmed that variable selection methods performed differently on 
different situational data sets. Depending on the strengths of the methods, results were combined to identify 
the most paramount variables. Day, total rainfall, and wind direction were superfluous features in all situa-
tions. The study concluded that shrinkage methods are best in cases of extreme multicollinearity, while QRF 
is best on data sets with outliers or/and heavy tails.  
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Nomenclature  

12V 12V battery average  

12VMax 12V battery maximum  

12Min 12V battery minimum  

24V 24V battery average  

24VMax 24 battery maximum  

24VMin 24V battery minimum  

BPAvg Barometric pressure average  

BPMax Barometric pressure maximum  

BPMin Barometric pressure minimum  

CAA Calculated azimuth angle  

CNR Clustering, nested modelling and regression  

CTA Calculated tilt angle  

DHITot Total diffuse horizontal irradiance  

DNIAvg Direct normal irradiance  

DNICal Calculated direct normal irradiance  

F Cumulative distribution function  

GHI Global horizontal irradiance  

MAE Mean absolute error  

MASE Mean absolute scaled error  

NUST Namibia University of Science and Technology  

OOB out-of-bag  

PE Prediction error  

PQR Penalised quantile regression 

QR Quantile regression 

QRF Qauntile regression forest 

R
2
 Coefficient of determination 

RF Random forest 

RHAvg Averaged relative humidity  

RHMax Relative humidity maximum  

RMSE Root mean square error  

SAURAN Southern Africa Universities Radiometric Association Network  

Si impurity decrease  

SI Solar irradiation  

TAvg Temperature average  

TMax Temperature maximum  

TR Total rainfall  

VIF Variance inflation factor  

WD Wind direction 

WDAvg Wind direction average  

WDStD Wind direction standard deviation  

WSAvg Wind speed  

WSMax Wind speed maximum  

WVM Wind vector magnitude  

X vector of covariates  

ix  the i
th
 covariate  

Y response variable 

iy  the i
th
 value of the response variable  

  vector of regression coefficients  

0  the regression intercept 

  tunning parameter  

  shrinkage parameter  

  quamtile level  

Q  the 
th quantile 

  population standard deviation  

n sample size 

N large sample size 
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1. Introduction 

It is inevitable that when studying solar irradiance 

(SI) one has to consider a lot of variables that may 

influence the radiation of the sun’s energy on the 

earth’s surface. Considering all variables in forecast-

ing models introduces the challenge of the curse of 

dimensionality. This is a phenomenon where mod-

els are negatively affected by the increase in the 

number of covariates. Some of these covariates may 

be giving redundant information which does not 

have any influence on prediction processes. These 

superfluous variables must be excluded when train-

ing the data. The question becomes, which variables 

are paramount to consider when building a model? 

It is necessary to find ways of identifying those insig-

nificant features and exclude them in model devel-

opment before training the model. In addition, a 

high dimensional training data set can negatively af-

fect a predictive model in several ways: (1) Predic-

tion accuracy is reduced; (2) models do not learn 

well a large number of irrelevant variables; (3) some 

important variables may not be picked due to inter-

ference from irrelevant variables; (4) it makes the 

model complex to interpret; (5) the algorithm pro-

cessing time is increased; (6) too many resources are 

used in the prediction process; (7) maintenance is 

difficult. As proved by Hossain et al. (2013), includ-

ing an optimal feature subset provides better predic-

tion accuracy in forecasting solar power, and the 

selection of a small (possibly minimal) feature set 

giving the best possible classification results is desir-

able for practical reasons. The subset fits well the 

data because it contains the most paramount varia-

bles. An optimal subset reduces overfitting in the 

model-building process. Different variable selection 

methods have been used to find this optimal subset 

of features, but the methods were developed to suit 

different data conditions. As a result, they focused 

on different aspects of data sets that have been de-

veloped thereby introducing different variable selec-

tion performances. That is, on different situational 

data sets the methods would give different optimal 

subsets. Therefore, this study is motivated by the 

need to establish situational SI data sets when differ-

ent embedded variable selection methods are best 

applicable. A comparative investigation of existing 

variable selection methods in SI studies is made 

here, and new variable selection methods are intro-

duced to achieve this objective. 

1.1 Rationale and contribution of the study  

Several methods are applicable to solve the curse of 

dimensionality in different situational data sets. 

However, according to the best of our knowledge, 

all studies that included variable selection on South-

ern Africa SI data applied lasso and/or its extensions 

(shrinkage methods only) without any comparative 

analysis. The methods might not have been the best 

approaches for those different situational data sets. 

A comparison of the variable selection methods is 

necessary before application.  

The main contribution of the current study is to 

demonstrate to the solar energy industry, meteorol-

ogists and the body of knowledge at large that dif-

ferent variable selection approaches perform 

differently on different situational data sets. The 

study showed that, although it may appear that lasso 

is the ideal variable selection method for Southern 

Africa SI data sets, it depends on location, time hori-

zon and nature of the data. To complement regular-

isation in its sensitivity to outliers we introduced 

penalised quantile regression (PQR). That is, adding 

the robustness to outliers and/or heavy-tailed data 

property of quantile regression (QR) to shrinkage 

methods. Since shrinkage methods only measure 

the relevance of a variable, random forests (RFs) 

which measure feature importance were also pro-

posed. RFs were developed to improve learning per-

formance by use of a voting system which enables 

them to measure the importance of variables as well 

as predict the response variable. That is, the current 

study proposed the inclusion of evaluating the im-

portance of variables in addition to relevance when 

finding an optimal feature subset. It suggested that a 

subset without corresponding variable importance 

measures is a local minimal. A global minimal subset 

of variables should consider variables of both best 

relevance and importance. In addition to proposing 

RFs, the study also checked whether regularising 

them improves their performance. It further pro-

posed hybridising the RF method with QR model-

ling. Apart from being robust to outliers and/or 

heavy-tailed data, QR gives unique insights into the 

predictor-response variable relationship through 

percentiles. Though this concept of hybridising mod-

els has become popular in machine learning meth-

ods, the study investigated whether hybridisation 

improves the embedded variable selection methods 

used to solve the curse of dimensionality when mod-

elling SI. Hybridisation may not be necessary in 

some situations.  

1.2 Research highlights  

This study shows that, although lasso has been pop-

ular in Southern Africa SI modelling, it is not always 

the best among shrinkage methods as a variable se-

lection technique. The root mean squared error 

(RMSE) was used to measure the goodness-of-fit of 

the shrinkage methods. However, shrinkage meth-

ods concentrate on relevance, so the evaluation 

study introduced separate RFs. RMSEs were also 

used to evaluate the goodness-of-fit of RFs and the 

PQR model. The PQR model was included to check 

if the weakness of shrinkages in failure to handle 

data with outliers and/or noise can be improved by 

hybridising with QR. The adjusted R
2
 and mean  
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absolute scaled error (MASE) were used as mea-

sures of performance and accuracy respectively. RFs 

would not perform better than shrinkage methods 

amid multicollinearity. As a result, a regularised RF 

(RRF) was also considered. Noting that SI data is 

heavy-tailed and sometimes contains outliers, it was 

checked whether hybridising separately both shrink-

age methods and RFs with QR would improve their 

performances. Analysis of variables selected by the 

different models was done and results (together with 

the R
2
) were used to check the stability of the meth-

ods through sensitivity analysis. 

 

2. Related literature  

Amongst the several studies done on solar irradia-

tion in the Southern Africa region so far, only five 

considered the selection of variables, to the best of 

our knowledge. Four of them applied lasso, but 

none did a comparison of the variable selection 

methods to check which one would best apply to 

their different situational data sets. However, outside 

Southern Africa, the latest variable selection method 

comparison in SI studies was done by Muller (2021). 

Their developed clustering, nested modelling and 

regression (CNR) model performed the best under 

high sensitivity when compared to lasso, lasso least 

angle regression, and elastic net. The study restricted 

the number of features, and CNR identified relevant 

information better than any other. In contrast, El 

Motaki and El Fengour (2021) used meteorological 

and geographical data with no correlated features as 

conditional variants in comparing different filter, 

wrapper and embedded variable selection methods. 

However, conclusions were made from the reduced 

number of features, stability and regression accuracy 

comparatives. Instead, lasso was considered by 

Tang et al. (2017) as a solar power generation fore-

casting tool. Comparison analysis was focused on 

forecasting accuracy rather than optimal variable se-

lection and found lasso’s capability to optimise fea-

ture selection as a trade-off between complexity and 

model forecasting accuracy. Outside the solar en-

ergy industry, Yilmaz and Kuvat (2023) used the R-

square metric to investigate the effect of nine feature 

selection methods (lasso and elastic net included) on 

the success of overall equipment effectiveness pre-

diction. Omoruyi et al. (2019) applied mean rank to 

optimise model selection among direct search, for-

ward selection, backward and stepwise on gross do-

mestic product data. Sanchez-Pinto et al. (2018) 

concluded that variable section method perfor-

mance is associated with sample size after compar-

ing regression-based and tree-based algorithms. The 

elastic net was found to be the most superior among 

the six algorithms compared by Williams et al. 

(2015) when applied to frequency and severity 

models of homeowner insurance claims. Simulation 

has been found useful in variable selection method 

comparative studies (Kipruto and Sauerbrei, 2021; 

Mehmood et al., 2020; Celeux et al., 2015). Surveys 

and reviews alike can be approaches for investigat-

ing the strengths and weaknesses of variable selec-

tion methods (Li et al., 2017; Wang, Wang and 

Chang, 2016; Khalid et al., 2014). All these previous 

studies were focused on the properties of variable 

selection methods as the basis for comparison, ex-

cept El Motaki and El Fengour (2021), who consid-

ered variants in the data properties. Therefore, the 

current study extends variable methods comparison 

investigation to data sets with separate and com-

bined existence of multicollinearity, heavy tails and 

outliers. It also adds time horizon variants to mete-

orological and geographical variants, which has not 

been done before. Among the existing embedded 

variable selection methods used in previous studies, 

the current research introduces PQR, RRF and QRF 

models. 

Lasso being the most common variable selection 

method in SI studies using Southern Africa data, 

Mpfumali et al. (2019) and Chandiwana et al. 

(2021) extended the implementation via hierar-

chical interactions between predictor variables. They 

claim that consideration of interactions greatly ex-

pands the understanding of the relationships among 

variables. Mpfumali et al. (2019) highlighted that the 

lasso is useful especially when dealing with highly 

correlated predictors but they mixed up relevance 

and importance in interpreting their results. Mu-

tavhatsindi et al. (2020) presented a bar chart of var-

iable coefficient values and also misinterpreted them 

as important features. A feature coefficient may be 

shrunk to zero by a regularisation process, but it 

does not necessarily mean that it is not important. 

Ratshilengo et al. (2021) agreed with so many other 

researchers who used lasso that the method tackles 

issues of model overfitting. The many advantages of 

lasso over other regularisation methods have made 

the method so popular. However, the question is 

whether the method would be the best in all SI cases.  

Leng et al. (2006) highlighted that when super-

fluous variables exist in a regression model and the 

design matrix is correlated then the probability of a 

regularisation method on identifying the true set of 

important variables is less than a constant, not de-

pending on the sample size. Thus, prediction-accu-

racy-based criteria are not suitable in such a 

situation. As a result, some researchers have sug-

gested some adjustments to the lasso, including 

Alhamzawi and Ali (2018), who extended the ad-

justment to the Bayesian adaptive lasso. We agree 

with Belloni and Chernozhukov (2011) that running 

the selection procedure at quantile levels may help. 

They developed a PQR, which is a hybrid feature 

selection of regularisation and quantile regression. 

Randa et al. (2022) stipulated that penalisation re- 
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moves at least nearly all covariates whose popula-

tion coefficients are zero in a QR process. Since pe-

nalised least squares regression is not robust to 

outliers or heavy-tailed error (Su and Wang, 2021), 

combining the technique with QR (a useful method 

on heteroscedasticity) has been found to improve 

regularisation. QR estimates the response feature at 

different quantile levels which gives precise insight 

into the relationship at the upper and lower tails of 

the distribution. Gu et al. (2017) added that the as-

ymptotic behaviour of quantiles can be directly in-

vestigated amid increasing data dimensions. PQR is 

very competitive, accurate and efficient. However, 

QR is generally inconsistent in high dimensional set-

tings while shrinkage deals with high multicollinear-

ity among covariates. The method has not been 

applied to SI data from Southern Africa.  

The other weakness of shrinkage methods is that 

they only focus on associations of covariates with 

the response through correlation. That is, they lack 

importance measurement of a variable on the re-

sponse, and yet lack of correlation does not neces-

sarily mean no importance. RFs classify features as 

important or rejected. Leo Breiman in 2001 advo-

cated that RFs are the best classifiers for high dimen-

sional data. They form an ensemble of weak 

unbiased classifiers which combine their results dur-

ing final classification. No tuning is necessary since 

trees are grown until each leaf contains just a few 

elements. Munshi and Moharil (2022) added that 

RFs can handle missing values with no overfitting. 

They are less affected by noise in the data, robust to 

outliers, and stable. Villegas-Mier et al. (2022) found 

that RFs gave a robust performance with similar re-

sults in two different scenarios. RFs delivered accu-

rate and precise results when mapping SI at high 

latitudes (Babar et al., 2020). Lee et al. (2020) also 

found that lagged solar irradiance features contrib-

ute significantly to the ensemble model. Their RF 

model produced SI at one-hour lag, relative humid-

ity and showed to have high importance scores on 

USA data from six stations. Zeng et al. (2020) con-

cluded that the RF model had high performance un-

der different climates and geographic conditions. 

The importance scores computed by Ibrahim and 

Khatib (2017) showed that sunshine, hour and tem-

perature were the most important features. We ap-

preciate that assessing importance scores guides the 

feature selection process. However, the concept of 

ignoring correlations makes RFs insensitive to inter-

action effects. Therefore, Deng and Runger (2012) 

proposed a tree regularisation framework based on 

the random forest method called regularised ran-

dom forest (RRF). The model was developed to im-

prove the performance of RFs amid data sets with 

significant multicollinearity. 

Now, the quantile regression forest (QRF) model, 

which includes percentiles, adds a no-parametric 

property of QR to give valuable information about 

the dispersion of observations. Freeman et al. 

(2023) claimed that it is possible to map the upper 

and lower bounds of predictions with QRF because 

predicted median and quantiles can be mapped. 

These predictions from individual trees in the model 

can follow any probability distribution. Vaysse and 

Lagaricherie (2017) used the extended ensemble 

method on soil properties, and it performed better 

than the common regression kriging. Another strong 

property of QRF is that it does not assume any prior 

distribution or stationarity of the response variable, 

so it is a better methodology to describe variability 

in the real world than linear QR. This is probably 

one of the reasons why Vantas et al. (2020) com-

pared QRF and the state-of-the-art kriging method. 

QRF compared very well with rainfall erosivity data 

in Greece. Asnaghi et al. (2017) used QRF as a 

novel approach for coastal management of harmful 

algal blooms. They found the methodology flexible 

in such a way that it could be extended to other eco-

logical phenomena that are dependent on meteoro-

logical features. Maxwell et al. (2021) also addressed 

weaknesses in geostatistical methods to model coal 

properties by proposing a QRF algorithm. The algo-

rithm performed better than the most popular re-

gression kriging method in the field of geostatistics. 

However, they found out that the algorithm is less 

intuitive and computationally demanding. The 

novel approach has not yet been applied to South-

ern Africa SI data and any SI variable selection study 

in the globe according to the best of our knowledge.  

3. Materials and methods  

3.1 Data and variables  

Radiometric stations in the Southern Africa region 

are geographically located as shown in Table 1.  

Data uploaded from the radiometric stations by 

the Southern Africa Universities Radiometric Associ-

ation Network (SAURAN) into their database can be 

accessed at their website (https://sauran.ac.za). The 

Meteorological Services Department in Zimbabwe 

supplied daily averaged insolation data from their 

Goetz observatory in Bulawayo. There were at least 

nineteen features considered from each SAURAN 

station on the hourly recorded SI datasets, with 

Windhoek having the highest number of twenty-one 

variables. The daily recorded data sets had more 

variables considered with Windhoek having the 

highest number of thirty-three variables. Solar irra-

diance from the SAURAN database was measured 

as hourly averaged global horizontal irradiation 

(GHI) in watts per square metre. However, at the 

Goetz observatory, solar irradiation was measured 

as daily total insolation also in watts per square me-

tre. Features considered from each location are 

shown in Table 2. 
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Table 1: Periods of data considered from radiometric stations. 

Station Latitude Longitude Elevation Location Period 

Goetz -20.1418223  28.6125335 1346 m Bulawayo Jan 2018–Sept 2022 

NUST -22.5650005 17.07500076 1683m Windhoek Jul 2017–Jun 2021 

SUN -33.9281006 18.86540031 119m Cape Town Jul 2017–Jun 2021 

UGB -24.6609993 25.93400002 1014m Gaborone Jan 2015–Nov 2020 

UKZNH -29.8709793 30.97694969 150m Durban Dec 2015–Jun 2021 

UP -25.7530804 28.22859001 1410m Pretoria Jul 2017–Jun 2021 

UV -23.1310005 30.42399979 628m Venda Jul 2017–Jun 2021 

 

Table 2: Variables considered from the SAURAN stations. 

Variable Units Durban Gaborone Windhoek Cape 
Town 

Pretoria Venda 

Diffuse horizontal irradiance w/m
2
 x x x x x x 

Direct normal irradiance w/m
2
 x x x x x - 

Calculated direct normal 

1rradiance 

w/m
2
 - - x x x x 

Temperature º C x x x x x x 

Relative humidity % x x x x x x 

Total rainfall mm x x x - x x 

Wind speed m/s x x x x x x 

Maximum wind speed m/s - - x - - x 

Wind direction degrees - x x x x x 

Wind direction standard  

deviation 

degrees - x x x x x 

Wind vector magnitude degrees 

 

x x - x x 

Barometric pressure mbar x x x x x x 

12V battery average volts x x x - x x 

12V battery minimum volts - x - x x x 

 24V battery average volts   - x - x x 

24V battery minimum volts - - - - x x 

24V-105Ah battery average volts x x - - - - 

12V-105Ah battery average volts - x - - - - 

 Logger temperature º C - x x - x x 

Calculated azimuth angle degrees - - x - - - 

Calculated tilt angle degrees - - x - - - 

 

3.2 Main assumption  

It is assumed that all radiometric stations in the 

Southern Africa region experience similar climatic 

conditions. As a result, though variable selection 

methods may select different variables in different 

locations, conclusions would apply to any other lo-

cation within the Southern Africa region. That is, a 

change of location within the same climatic region 

does not significantly affect features that influence 

the amount of solar energy received on Earth. 

3.3 Shrinkage algorithms  

3.3.1 Regularisation methods  
A shrinkage method is defined as a general proce-

dure used to improve a least squares estimator and 

comprises reducing variance by adding constraints 
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on the value of the coefficients. They remove irrele-

vant variables by reducing the fitted coefficients to 

zero.  

 

Theorem 1. A variable Xi is irrelevant to Y concern-
ing X (notwithstanding that Xi ∈ X), for which, for all 
A ⊆ X, the conditional mutual information, I (Xi; Y 
|A) of Xi and Y given the variable in A is equal to 
zero. 

 

Thus, lasso and elastic net (ridge regression also 

being a special case of the elastic net) were devel-

oped to identify such variables in Theorem 1 by 

shrinking the coefficients of irrelevant variables to 

zero. The algorithm developed by Friedman et al. 

(2010) generalises naturally to the unstandardised 

cases of observations such that 

     ,)()(
2

1

1

2
0 +−−

=

n

i

T
ii Pxy

n
     (1) 

 is minimised, where  

     ,||)1(
2

1
)(

1

2
=

+−=
p

j

jjP 
  (2) 

is the elastic net penalty.  

The lasso penalty is also a compromise of the 

elastic net penalty when α = 1 in Equation 2. When

)0(,1 −=  , elastic net performs much like a 

lasso, but removes any degeneracies and wild be-

haviour caused by extreme correlations. When α = 

0 the penalty becomes a compromise to the ridge 

regression penalty. Ridge regression was proposed 

to minimise the residual sum of squares subject to 

the constraint (Equation 3).  

     
=


p

j

j lt
1

2

2 norm). (||||     (3) 

The solution to the problem in Equation 1 is 

unique given the condition in Theorem 2, which is 

fulfilled when p ≤ n. That is, assuming that X has a 

full rank then:  

 

Theorem 2. 
* is a unique solution to the Lagran-

gian form in Equation 5 if  

     
},{)()( * OXNC =

 

where O is a p-dimensional null vector and 

}.,0:{)()( ** eexRxCnxc Tp ==   

However, it is noted that although the solution is 

not necessarily unique it is still convex and neigh-

bourhood search results can be used. If cross-valida-

tion is applied when solving the problem in Equation 

1 for a good value of a regularisation parameter, 

then λ is chosen to minimise the prediction error 

(PE) in Equation 4: 

,)( 2XYEPE −=  (4) 

where Y ∈ RN×1 
is a vector of the response variable 

observations and X ∈ RN×p 
is the matrix of predictor 

variables. Different structure models are obtained 

from several choices of λ’s that give the same PE. 

However, the choice of the parameter using an n-

fold cross-validation is not stable in many cases 

(Park and Casella, 2008).  

The main objective is to achieve better prediction 

in the face of multicollinearity while preventing over-

fitting. Lasso shrinks the coefficients of correlated 

variables towards each other which allows them to 

borrow strength from each other. However, the 

method shrinks all regression coefficients to zero and 

yet some variables may be important. On the other 

hand, lasso ensures that only relevant variables are 

selected. However, lasso tends to pick one and ig-

nore the rest of a group of highly correlated varia-

bles. The selected coefficient has a high variance 

because this collinearity causes the corresponding 

coefficient standard error to become unstable. Reg-

ularisation is achieved by continuously shrinking the 

coefficients such that if λ is sufficiently large then 

some coefficients are shrunk to zero. However, a lit-

tle bias to reduce the variance of the predicted val-

ues is compromised at the overall benefit of 

improving the prediction accuracy. It becomes a rel-

evant technique for situations where regularised 

methods are applied as the inclusion of statistical 

modelling for the feature selection process and the 

results used for further analyses. Feature selection 

and regularisation performed by lasso enhance 

model prediction accuracy by tackling the problem 

of overfitting. It does so on finite samples and per-

forms well in cases where p may grow faster than n. 

It is a novel approach to problems of high dimen-

sional non-linear modelling where the structure of 

the model has to be detected. Most other methods 

are not adequate, in that they do not deal well with 

large numbers of irrelevant explanatory variables. 

This makes lasso to be an advantageous variable se-

lection procedure in difficult forecasting problems. 

However, lasso in particular selects at most n varia-

bles before saturating in small n but large number of 

variables data sets. It is a challenge to apply shrink-

age methods when some variables are recorded 

through some calculations, because there would be 
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no common referral point for the features to choose 

which ones should be selected.  

3.3.2 Penalised quantile regression  
When cross-validation is repeated, shrinkage meth-

ods tend to be unstable. In addition, these regular-

ised least square regression methods are not robust 

to outliers or heavy-tailed error distribution. Yet QR 

is robust, and sparse and gives unique insights into 

the relationship between features and response var-

iables. Penalisation in QR removes at least nearly all 

features whose population coefficients are shrunk to 

zero whilst (in particular comparison to lasso) the 

method of percentiles deals with its coefficients’ in-

stability under repeated cross-validations. So, penal-

ised QR offers sparse solutions as well as performing 

automatic feature selection. The l1 PQR estimator

)(ˆ   is a solution to the optimisation problem, as 

shown in Equation 5.  

      ,||ˆ
)1(

)(ˆmin
1

2
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p

j
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where )(ˆ 22

ijj xE=  and T ⊂ (0, 1) such that  

   T.,)(),()|(1

| =−  p

ixy RxxF
ii

 (6) 

The overall penalty level )1(  − depends 

on each quantile τ, whilst λ depends on T.  

Table 3 gives a summarised comparison of the 

lasso, elastic net, ridge and PQR as a group of 

shrinkage variable selection methods. 

3.4 Tree-based algorithms  

3.4.1 Random forests  
RFs are popular learning models for solving a variety 

of classification and regression problems. They are 

based on a multitude of decision trees which are in-

dependently developed on different sample bags 

taken from the training set. RFs are an ensemble 

method in which classification is performed by vot-

ing of multiple unbiased decision trees. Different 

subsets of attributes are randomly selected at each 

step of tree construction. These subsets are different 

bootstrap samples of the training set. Each bootstrap 

sample is a result of the replacement selection of the 

same objects as in the original set. Trees that are 

trained on different parts of the same training set are 

averaged to reduce variance, but this increases bias 

and the models may lose interpretability. Conse-

quently, this will pull together efforts of the tree al-

gorithms. Therefore, the performance of a single 

random tree is improved by this teamwork of many 

trees. However, the performance of the final model 

is greatly boosted. Trees that are grown very deep

Table 3: Comparison of shrinkage methods. 

Method Strengths Weaknesses 

Lasso Ensures that only relevant variables are se-

lected. 

Both a variable selector and forecasting model. 

Adequate on too high-dimensional data and 

non-linear modelling. 

Pick one and ignore the rest of a group 

of highly correlated variables. 

Selects at most n variables before satu-

rating in small sample sizes but high di-

mensional cases. 

Elastic net Removes degeneracies and wild behaviour 

caused by extreme correlations. 

Encourages a grouping effect. 

Provides a compromise between lasso and 

ridge regression. 

It is hard to tune two hyperparameters 

simultaneously.  

It may not be interpretable or explaina-

ble. 

Ridge Achieves good prediction when covariates are 

correlated while preventing overfitting. 

The coefficients of some important varia-

bles may be reduced to zero. 

The penalty term cannot force the coeffi-

cients to be exactly zero. 

Coefficient estimates can change sub-

stantially when multiplying a given pre-

dictor by a constant. 

PQR Robust to outliers. 

Gives unique insights into the relationship be-

tween features and response variables at all 

quantile levels of the distribution. 

Deals with its coefficients’ instability under re-

peated cross-validation. 

Lacks the ability to reveal grouping in-

formation. 

Computationally complex. 

The check loss function is not smooth. 
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can learn highly irregular patterns in the data and 

have a low bias at the expense of overfitting the 

training sets. The original dataset is extended by 

adding the so-called shadow features whose values 

are randomly permuted among the training cases to 

remove their correlations with a decision variable. 

Then importance estimation of a feature is calcu-

lated as the loss of classification accuracy caused by 

a random permutation of feature values of cases. 

That is, the importance of any variable is evaluated 

as the mean decrease impurity importance (MDI), 

shown in Equation 7.  

     
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where p(j) is the proportion nj/n of samples reaching 

j nodes, ),()( jsjp ii  is the weighted impurity de-

crease and v(sj ) is the variable used in split sj . Now, 

if X−i
 denotes the subset X{Xi} and Pk(X−i

) is the set 

of subsets of X−i
 of cardinality k then we can use 

Theorem 3 to compute MDI. 

 

Theorem 3. MDI importance of Xi ∈ X for Y as 
computed with an infinite ensemble of fully devel-
oped randomised trees and an infinitely large train-
ing sample is as shown in Equation 8. 
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We deduce from Theorem 4 that an irrelevant 

 variable has no importance, but among relevant 

variables we can have strongly relevant ones, which 

are classified as confirmed important. Then weakly 

relevant variables are classified as tentative.  

Theorem 4. Xi ∈ X is irrelevant to Y concerning A 
if and only if its infinite sample size importance as 
computed with an infinite ensemble of fully devel-
oped randomized trees built on X for Y is 0.  

RFs improve learning performance through a 

voting system given a set number of decision trees. 

As new objects come in, all trees in the forest classify 

them and the final decision on the new objects is 

made through this voting system. Trees vote for the 

classification of objects which were not involved in 

their classification. The votes for a correct class are 

recorded for each tree. Then values of variables are 

randomly permuted across objects and the classifi-

cation is repeated. In summary, RFs exhibit charac-

teristics of random feature selection, bootstrap 

sampling, out-of-bag (OOB) error estimation and 

full-depth decision tree growing. That is, an RF 

model first extracts some of the samples by boot-

strap sampling and then randomly selects the fea-

tures of these samples, as shown in Figure 1. 

These two steps of random sampling make RF 

more tolerant to the noise in the data and reduce the 

possibility of overfitting. However, when data has 

random correlations in a large number of variables 

it is difficult for RFs to distiguish truly important var-

iables from those that gain importance. An RRF may 

be considered on such data.

 

Figure 1: RFs algorithm (Source: Ibrahim and Khatib, 2017).
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3.4.2 Regularised random forests  
The RRF framework is generally for feature selection 

where the process is greedy and features are chosen 

on a sub-sample from each node. That is, in each of 

those nodes all observations are analysed. Feature 

selection is done by avoiding features not belonging 

to F (a feature set used in previous splits in a tree 

model) unless a regularised information gain is de-

fined by Equation 9, where 

    








=

FXvX

FXvX
vX

ii

ii

i
for,),(gain

for),,(gain.
),(gain


  (9) 

is significantly larger than the maximum gain. λ ∈ [0, 

1] is the penalty charged on gain (Xi , v) for a feature 

that does not belong to F. Therefore, the assumption 

is that maximising gain (Xi , v) selects the splitting 

feature at any tree node.  

3.4.3 Quantile random forests 
QRFs assess the conditional distribution of the re-

sponse i.e. in each tree all of the leaves keep all of 

the relevant observations. If the observations are un-

equally weighted, then a good approximation of the 

full conditional distribution can be delivered. If the 

weights Wi(x) are calculated, then the conditional 

distribution of the response given by Equation 10. 

   )|()|( xXyYPxXyF ===    (10) 

 can be estimated as  
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That is, for any τ -quantile level defined by Equa-

tion 12, 

    ),1,0(,)|)(( ==   xXxQYP    (12) 

we can consider the spread of the response in the 

form of a quantile, as in Equation 13. 

     .)|(ˆ:inf)(  == xXyFyxQ    (13) 

Now, this conditional distribution model can be 

solved as an optimisation problem, by Equation 14.  
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where λ is the tuning parameter.  

3.5 Methodology  

The evaluation of variable selection methods con-

sidered in this study was focused on a comparative 

 investigation approach in different locations and 

time horizons. The study focused on performance 

comparison of embedded variable selection meth-

ods. The methods determine the best feature subset 

while building the statistical learning model itself 

which is ideal for solar irradiance modelling. Embed-

ded methods are very relevant algorithms to our 

study because they select variable subsets in the 

course of training the data (El Motaki and El Fen-

gour, 2021) and, further, use their results to deter-

mine how solar irradiation forecasting can be 

improved. It was deduced from the literature that so-

lar irradiation data contain some outliers and have 

significant multicollinearity among covariates. The 

presence of outliers and correlated covariates can 

significantly influence the performance of variable 

selection algorithms. Thus, the variance inflation 

factor (VIF) was used to assess the collinearity of var-

iables considered from each data set. Then multicol-

linearity was measured as a proportion of variables 

with VIFs greater than 1. A Grubb’s test was also 

conducted on each data set to check the presence of 

at least one outlier. The normality of the response 

has a bearing on the properties of variable selection 

algorithms, so the distribution of solar irradiance was 

explored through the skewness statistic computa-

tion, box plot construction and interpretation. As a 

result, there was a need to apply robust and sparse 

variable selection algorithms like embedded. Apart 

from giving diverse samples that are good enough 

to come up with significant associations between ra-

diometric stations, the multi-site forecasting ap-

proach enhances the statistical power of an 

algorithm (Sigauke et al., 2023). A cross-validation 

process was then implemented on each multi-site 

data set, that is, splitting the data set: 80% going into 

training and 20% into test samples. Models were fit-

ted on the training data frames and then variable se-

lection capabilities were analysed using the testing 

data frames. The partitioning strategy avoids the 

overfitting problem, improves prediction based on 

bias and/or variance, assesses how effectively the 

model will perform in real-world scenarios and al-

lows for predicting how well a model will perform on 

data that it has not seen before (Yilmaz and Kuvat, 

2023).  

The embedded methods were also classified into 

two groups, namely the shrinkage methods (lasso, 

elastic net, ridge, PQR) and tree-based methods 

(RF, RRF, QRF). Shrinkage algorithms were devel-

oped for better performance while avoiding overfit-

ting on multicollinear covariates through the assess-

ment of variable relevance. On the other hand, tree-

based algorithms may overfit the data but can learn 

highly irregular patterns in solar irradiation data with 

low bias. The ensemble of decision trees selects var-

iables by classifying them as important or not. QR 

hybrids were also introduced among the algorithms 



11    Journal of Energy in Southern Africa • Vol 35 No 1 • 2024 

because QR is robust to outliers, whose presence in 

solar irradiation data has been indicated by the liter-

ature. All tree-based algorithms are non-parametric 

models, which are best adapted for modelling re-

sponse variables like solar irradiance, which has no 

known relationship structures with its covariates as 

yet. The RMSE metric was used to find the best 

among lasso, elastic net and ridge. These three 

shrinkage methods are called regularisation algo-

rithms. The three regularisation algorithms have the 

same model structure, i.e. Equation 1. As a result, 

we presumed that, for any sample data, if the best 

algorithm (in terms of the RMSE) among these three 

regularisation methods is inferior to any other model 

compared in this study then the inferior models 

among the regularisation methods can never outper-

form that other model. For example, suppose that 

for the Venda data set, the elastic net has the lowest 

RMSE among the regularisation algorithms but it is 

outperformed by the RF algorithm. We would not 

expect lasso or ridge to outperform the RF algo-

rithm. That is, the best regularisation algorithm is the 

one we compared with PQR and the rest of the tree-

based algorithms. In that context, we combined the 

regularisation algorithms through the ‘glmnet’ R pro-

gramming software package developed by Hastie et 

al. (2023). The package uses one penalty, λ but adds 

another parameter α ∈ [0, 1] such that the general 

structure of the regularisation model can be written 

as Equation 15:  

 (15) 

where 
)ˆ(L

 is minimised. The parameter λ con-

trols how much of the tuning needs to be done on 

the penalised least squares regression process. The 

software has an inbuilt k-fold cross-validation (CV) 

algorithm where k (model size) is automatically se-

lected on which the resulting test has the smallest CV 

error. While the three regularisation algorithms used 

multiple linear regression to learn the data, PQR 

uses multiple linear QR and the method of quantiles 

to estimate the regression coefficients. The Boruta 

algorithm was used to train the RF and RRF models 

while the QRF was trained using non-parametric 

quantile regression.  

To prevent the researchers’ judgment from bias-

ing the results, a forward selection technique was im-

plemented on each multi-site data set. That is, all 

variables in each data set were fed into the model at 

once and then assessed according to the extent each 

algorithm provides an optimal subset that results in 

a highly predictive model. The assessments were 

done by analysing the experimental error according 

to the RMSE, adjusted-R
2
 and MASE evaluation 

metrics. The RMSE was used as a basis for compar-

ing the goodness-of-fit of the models, and with ad-

justed-R
2
 their predictive performances were 

compared. Since solar irradiation data include zero 

values of GHI, MASE was used as a basis metric for 

predictive accuracy comparisons. Performance 

scores on each metric evaluation were generated 

and a system of ranking the models was introduced 

to finalise the comparison investigation. Other algo-

rithm comparative considerations were the ease of 

setting up the model in software and the speed of 

processing results when running the coded algo-

rithm.  

Through listing, common variables with coeffi-

cients shrunk to zero and rejected were identified by 

inspection. They were determined from the relevant 

and importance scores calculated using the respec-

tive fitted models. The flow chart in Figure 2 sum-

marises the comparative investigation approach 

adopted in this study. The stability of the models was 

checked through a sensitivity analysis, where it was 

observed how the model performances changed 

when sample sizes were changed. That is, we 

checked for consistencies in R
2
 values as we varied 

sample sizes and general performances across differ-

ent locations. We also checked whether the algo-

rithms were selecting the same variables in these 

different locations.  

3.5.1 Goodness-of-fit evaluation  
The goodness-of-fit of the models was evaluated by 

measuring the deviations of the fitted from the actu-

als using computing the RMSE, as given in Equation 

17. 
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where iy is the actual observed SI and iy


is the cor-

responding model fitted value. That is, it is the stand-

ard deviation of the residuals. The smaller the RMSE 

the better the model fits the data. 

3.5.2 Performance evaluation  
Performance is the universal metric for evaluating a 

learning model. Performance was measured by cal-

culating the proportion of the total variation in solar 

irradiation that could be explained by the covariates. 

That proportion was then expressed as a percentage 

through the coefficient of multiple determination, R
2
. 

Difficulties in interpreting it are avoided by consid-

ering the adjusted R
2
. For a p dimensional data set 

the adjusted R
2 
can be computed as in Equation 18. 
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Figure 2: Methodology flow chart.

The adjusted R
2
 does not necessarily change as 

more and more covariates are introduced and the 

best model is the one that gives the maximum value 

of the metric. 

3.5.3 Accuracy evaluation  
The MASE provides an interpretable measure of ac-

curacy in predictive modelling. It is a good metric to 

use when comparing models trained on different da-

tasets. It is one of the most appropriate metrics when 

the response has zero or near zero values. The met-

ric is computed by dividing the mean absolute error 

(MAE) of the trained model by the MAE of the cor-

responding naïve mode. The naïve model predicts 

the value at a time point as the previous historical 

value. That is, MASE indicates the effectiveness of a 

forecasting model concerning a naïve model. As a 

result, a MASE greater than 1 means that the fore-

casting model is performing worse than the naïve 

benchmark otherwise it is better. A forecasting 

model with a lower MASE is a better model than the 

one compared to. 

3.5.4 Sensitivity analysis  
A sensitivity analysis was done to compare conclu-

sions between the analysis carried out and another 

analysis in which some aspect of the approach is 

changed – for example, changing parameters or as-

sumptions of the modelling process, such as support, 

confidence, or lift, to observe how the model 

changes and find the optimal values. The sensitivity 

analysis attempts to assess the appropriateness of a 

particular model specification and to appreciate the 

strength of the conclusions being drawn from such a 

model. The process involves a series of methods to 

quantify how the uncertainty in the output of a 

model is related to the uncertainty in its inputs. In 

this way it assesses how “sensitive” the model is to 

fluctuations in the parameters and/or data on which 

it is built. 

4. Results and discussions  

4.1 Data exploration  

Multicollinearity was quite high on the hourly data 

sets from all except Cape Town, which had 24%; the 



13    Journal of Energy in Southern Africa • Vol 35 No 1 • 2024 

rest had more than 30%, as shown in Table 4. Wind-

hoek had an extreme multicollinearity of 72% on 

daily recorded variables but Bulawayo had a very 

low multicollinearity of 13%. A Grubb’s test for out-

liers shows that Cape Town and Durban hourly SI 

had outliers because they had p-values less than 

0.05. Bulawayo is the only one that had outliers on 

the 24-hour horizon (p-value =1.07×10
−6

). 

Hourly SI is positively skewed because all of the 

skewness values were more than 1.0, while 24-hour 

SI is not skewed. The skewness values of 24-hour SI 

can be approximated to zero, as shown in Table 4. 

Hourly SI is also heavily right-tailed on all locations, 

as shown by all box plots in Figure 3, whilst daily SI 

is symmetrically distributed (Figure 4). All of the box 

plots in Figure 3 have right-hand side whiskers and 

no left-hand side whiskers. 

4.2 Evaluation of regularisation algorithms  

The first model comparisons were done amongst the 

regularisation algorithms because they use the same 

model structure shown in Equation 1. To determine 

the best regularisation algorithm, RMSEs from 

trained models in Equation 14 for each value of α 
were calculated and are given in Table 5. The best 

regularisation algorithm for a particular location is 

the one with an RSME in bold. The results show that 

lasso was the best shrinkage method in only one lo-

cation, Windhoek on hourly SI data. The data set 

had a high multicollinearity percentage. Either elas-

tic-net or ridge regression was the best for the other 

locational data sets. It can also be  observed that 

ridge regression was the best in Venda, where the 

data set had the highest multicollinearity percentage.

Table 4: Multicollinearity, outliers’ tests and skewness results. 

 Multicollinearity 
percentage 

 Grubb’s test p-value Skewness 

Location Hourly Daily  Hourly Daily Hourly Daily 

Bulawayo - 13  - 1.07×10
−6

 - -0.060 

Cape Town 24 26  1.34×10
−7

 158.41021 5.906 0.066 

Durban 32 -  4.90×10
−10

 - 1.856 - 

Gaborone 42 42  1 1 1.111 0.017 

Pretoria 35 26  1 1 1.126 -0.006 

Windhoek 43 72  1 0.21 1.004 0.283 

Venda 50 57  1 1 1.296 0.000 

 

 

Figure 3: Hourly averaged SI box plot for (a) Cape Town, (b) Durban, (c) Gaborone,  

(d) Pretoria, (e) Windhoek, and (f) Venda. 
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Figure 4: Daily averaged SI box plot for (a) Bulawayo, (b) Cape Town, (c) Gaborone,  

(d) Pretoria, (e) Windhoek, and (f) Venda. 

 
Table 5: Comparison of regularisation algorithms using the RMSE for hourly SI. 

Alpha Venda Pretoria Windhoek Cape Town Gaborone Durban 

0.0 0.158 0.743 0.869 0.775 0.249 1.169 

0.1 0.841 0.734 0.740 0.827 0.653 0.927 

0.2 0.878 0.733 0.722 0.828 0.655 0.929 

0.3 0.885 0.737 0.725 0.829 0.657 0.931 

0.4 0.888 0.740 0.727 0.830 0.650 0.933 

0.5 0.888 0.742 0.722 0.831 0.648 0.936 

0.6 0.881 0.744 0.722 0.831 0.648 0.936 

0.7 0.884 0.747 0.722 0.832 0.645 0.939 

0.8 0.881 0.749 0.719 0.833 0.643 0.941 

0.9 0.877 0.750 0.719 0.833 0.644 0.941 

1.0 0.878 0.752 0.718 0.834 0.642 0.941 

Best Ridge Elastic net Lasso Ridge Ridge Elastic net 

 

A 24-hour time horizon was also considered, in 

order to check how the time horizon influences the 

variable selection methods. Results show that lasso 

was not the best in any of the locations considered, 

as shown in Table 6. The elastic net was the domi-

nant 24-hour SI in the variable selection context, in- 

stead. Bulawayo was the only location where the 

elastic net was inferior to ridge regression. We ob-

serve that Bulawayo 24-hour data had the lowest 

multicollinearity percentage of 13, but outliers were 

existent in the data set. The data set was one of only 

two that was negatively skewed.  
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Table 6: Comparison of regularisation algorithms using the RMSE for 24-hour SI. 

Alpha Venda Pretoria Windhoek Cape Town Gaborone Bulawayo 

0.0 7.530 2.500 2.002 0.948 15.956 0.2568 

0.1 4.026 2.663 1.261 0.310 16.001 0.2571 

0.2 3.808 2.636 1.307 0.313 16.003 0.2571 

0.3 3.943 2.618 1.319 0.270 16.043 0.2572 

0.4 3.475 2.614 1.153 0.228 15.915 0.2572 

0.5 3.437 2.496 1.160 0.181 15.701 0.2571 

0.6 3.273 2.562 1.140 0.226 16.024 0.2573 

0.7 3.340 2.597 1.148 0.167 16.168 0.2571 

0.8 3.431 2.607 1.121 0.137 16.187 0.2573 

0.9 3.599 2.617 1.148 0.240 16.268 0.2571 

1.0 3.513 2.575 1.154 0.217 16.519 0.2573 

Best Elastic net Elastic net Elastic net Elastic net Elastic net Ridge 

Table 7: RMSEs for hourly SI. 

Location Shrinkage PQR RF RRF QRF 

Cape Town 45.772 84.708( =0.9) 434.678 434.148 11.707( =0.5) 

Durban 65.532 48.020( =0.6) 406.293 406.368 38.410( =0.6) 

Gaborone 106.431 109.273( =0.6) 455.393 455.461 28.199( =0.5) 

Pretoria 82.969 87.486( =0.5) 438.869 438.855 18.069( =0.5) 

Windhoek 94.351 109.965( =0.5) 505.733 505.728 13.094( =0.5) 

Venda 69.757 71.562( =0.5) 416.607 416.524 30.659( =0.5) 

 

4.3 Comparisons of variable selection 

methods 

The best regularisation algorithm on each location 

was compared with the PQR, RF, RRF and QRF var-

iable selection methods. All algorithms were coded 

and run in R programming software where the 

‘quantreg’ (Koenker, 2018) and ‘rqPen’ packages 

were used to fit the PQR model, the ‘Boruta’ (Kursa 

and Rudnicki, 2022) package fitted the RF model, 

the ‘randomForest’ and ‘RRF’ (Deng et al, 2022) 

packages were used to fit the RRF model and 

‘quantregForest’ (Meinshausen, 2022) package fit-

ted the QRF model. 

4.3.1 Goodness-of-fit evaluations  
The RMSE for the best regularisation algorithm on 

each location was also compared against PQR, RF, 

RRF and QRF. QRF had the lowest RMSEs on all 

locations for hourly SI as shown in Table 5 (RMSE 

in bold shows the smallest RSME for that particular 

location). Results show that PQR had larger RSMEs 

than regularisation algorithms in all locations except 

for Durban where there was an improvement from 

elastic net. We suspect that the reason is that more 

than 90% of the features considered in all locations 

were important as evidenced by importance scores 

from RF, RRF and QRF models. That is, data sets 

considered did not have superfluous features. 

Therefore, hybridising a regularisation model with 

quantile regression would not improve the model. 

Thus, the results demonstrate that shrinkage meth-

ods have been developed to overcome the chal-

lenges of multicollinearity in modelling because they 

could handle the high multicollinearity in the data 

sets considered. On all locations shrinkage methods 

performed markedly better than RFs. Even regular-

ising the RF did not improve the selection process 

except for Gaborone 24-hour data as shown in Ta-

ble 7. The RMSEs in both Table 7 and Table 8 of all 

corresponding RRFs were higher than those of RFs, 

worsening the performance of the RFs. Surprisingly, 

adding the non-parametric property of QR to the RF 

model significantly improved the feature selection 

performance of an RF on all locations except for 24-

hour SI in Gaborone. QRF hybrid model became 

the best method for all hourly SI. The non-paramet-

ric property of QR and its other several advantages 

in regression modelling could be attributed to this 

significant improvement.  
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Table 8: Selection methods RMSEs for 24-hour SI. 

Location Shrinkage PQR RF RRF QRF 

Bulawayo 5.598 5.702( =0.5) 7.599 7.599 5.343( =0.5) 

Cape Town 36.477 40.652( =0.8) 252.090 252.285 32.636( =0.6) 

Gaborone 336.317 351.345( =0.6) 564.911 202.070 212.501( =0.6) 

Pretoria 18.823 14.939( =0.6) 103.403 103.569 21.227( =0.5) 

Windhoek 12.560 12.676( =0.6) 91.268 91.302 20.224( =0.6) 

Venda 321.936 353.215( =0.7) 485.782 486.607 260.412( =0.6) 

 

Figure 5: Bar chart exhibiting the R-squared scores.

It is noted that both QR and RFs are robust to 

outliers. RFs are also tolerant of outliers. In locations 

where there were outliers (Cape Town for hourly 

time horizon and Bulawayo for daily time horizon) 

the performance of QRF was the best among the lo-

cations. Median conditional distribution (i.e. at τ = 

0.5) gave the best description of solar irradiation in 

almost all locations. However, the model cannot 

measure the association of features with the re-

sponse through correlations. Though QRF was bet-

ter than any of the RFs, it performed best in only 

three locations and elastic net was the best in Wind-

hoek for the daily time horizon (it is noted that Wind-

hoek has extreme multicollinearity). Likewise, 

hybridising a shrinkage method with QR on hourly 

time horizon data sets did not improve the selection 

method on daily recorded SI except for Pretoria, 

where a PQR was the best selection method. 

 4.3.2 Adjusted R-square comparisons  
The adjusted R-square was used as a performance  

indicator in this study. To analyse the performance, 

Figure 5 shows the R-squared scores. All of the ad-

justed R-squared scores were at least 90% except for 

shrinkage and PQR methods on the Gaborone data 

set. The shrinkage methods had a 78.25% score 

while PQR had 81.33%. The data set had a rela-

tively high multicollinearity percentage of 42, no 

outliers and was comparatively skewed like any 

other data set used in this study. Further investiga-

tions may be required on the data set to find out the 

reason for comparatively low adjusted R-squared 

scores. The new QRF model had the highest ad-

justed R-squared scores from all data sets, followed 

by RRF and then RF. It showed that the hybridisa-

tion of an RF with QR performed better than the RF 

on its own. Results show that RF-based algorithms 

had better predictive performances than regularisa-

tion methods. This means that RF-based algorithms 

could explain the total variation in solar irradiation 

caused by the covariates considered in this study 

better than shrinkages and PQR. Results also show 
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that introducing QR on regularisation methods did 

not improve their performance, because the PQR 

model had smaller or almost equal adjusted R-

squared scores than shrinkage on all locations. 

4.3.3 Accuracy evaluations  
Results in Table 9 show that all of the models per-

formed better than their corresponding naïve mod-

els when trained to the data from all locations under 

study. All of the MASE values were less than one. 

The results also show that QRF had the smallest 

MASE values in each location (the locational MASE 

values in bold) meaning that it was the most accu-

rate variable selection method for each location. It is 

also observable that it is the same method that had 

the smallest (MASE=0.026) among all computed 

MASE values. Therefore it can be deduced that QRF 

was the most accurate variable selection method. 

4.3.4 Model rankings  
The average rankings of the variable selection meth- 

ods over all of the locations are shown in Table 10. 

Results show that QRF was ranked first on all of the 

metrics. That is, QRF is the overall superior variable 

selection method among the methods considered in 

this study. The shrinkage method was ranked sec-

ond on RMSE but last on both adjusted R-square 

and MASE. Though RFs were ranked better on per-

formance and accuracy, shrinkages were better fit-

ting the data. 

4.4 Feature selection evaluation  

Features with coefficients shrunk to zero or rejected 

were different in the selection method, location and 

time horizon. Table 11 shows that total rain, wind 

speed, maximum wind speed, wind direction, wind 

direction standard deviation, 12V battery, 12V bat-

tery minimum and 24V battery can be excluded 

from hourly SI prediction modelling. The features 

were either rejected or had coefficients that were 

shrunk to zero in at least two locations or two meth-

ods.

Table 9: MASEs for hourly SI. 

Location Shrinkage PQR RF RRF QRF 

Cape Town 0.110 0.070 0.038 0.038 0.032 

Durban 0.119 0.115 0.051 0.051 0.034 

Gaborone 0.305 0.286 0.115 0.114 0.064 

Pretoria 0.250 0.246 0.069 0.071 0.045 

Windhoek 0.209 0.202 0.041 0.040 0.026 

Venda 0.209 0.187 0.106 0.107 0.069 

 Table 10: Model comparison by average rankings. 

Metric Shrinkage PQR RF RRF QRF 

RMSE 2 3 5 4 1 

Adjusted R
2
 5 4 2 3 1 

MASE 5 4 2 3 1 

 Table 11: Features not selected on hourly SI. 

Location Shrinkage PQR RF RRF QRF 

Cape Town None Month,12V None None None 

Durban TR,WSAvg WSAvg None None None 

Gaborone None Hour,WSAvg None TR TR 

Pretoria 12V,12VMin, 

24VMin 

WSAvg,WVM,24Min, 

WDStD,BPAvg,12V,TR 

None TR TR 

Windhoek 12V,Year,Day WSAvg,WVM,WDStD, 

RHAvg,WSMax,BPAvg,12V 

None TR,WDAvg, 

WSAvg,WSMax 

None 

Venda None WSAvg,12V,12Min None TR TR 
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Table 12: Features not selected on daily time horizon. 

Location Shrinkage PQR RF RRF QRF 

Bulawayo None None None None Day, WSAvg 

Cape Town Year,RHMax, 

TMax,BPMax 

DHITot,BPMax None None Year,Day, 

WSAvg 

Gaborone WSAvg,12VMin DNICalc,WSAvg None None None 

Pretoria Year,WVM, 

WDAvg,Day,12V 

12VMin 

WDAvg,WVM None None Day 

Windhoek DNIAvg,TMax 

WVM,24VMin 

DNIAvg, TAvg, 

WDAvg, 24VMin 

None None Year,24V 

Venda None WDStD,WSMax, 12VMax, 

24VMax, DNICalc 

Day Day Day,12V 

Table 13: Features with coefficients shrunk to zero. 

Time Bulawayo Cape Town Durban Gaborone Pretoria Windhoek Venda 

Hourly - Day,CAA, 

WDAvg 

TR, Day 

WDAvg 

WDAvg Day WSAvg, 

WDAvg 

WDAvg 

Daily None Year, Day, TMax, 

RHMax, BPMax, 

DHISTot 

- WDAvg, 

12VMin 

WDAvg, 

WVM 

TMax, WVM, 

BPMin, 

24VMin 

None 

Table 14: Rejected or less important features. 

Time Bulawayo Cape Town Durban Gaborone Pretoria Windhoek Venda 

Hourly - None TR, WDAvg 

WDStD 

Day, 

CTA,CAA 

TR WSAvg, WDAvg TR 

Daily WSAvg, 

Day 

None - None Day Day, Year, 12V, 

WDStD, WVM, 

24VMin 

Day, 

12V 

 

On 24-hour SI, features that were not selected on 

at least two locations were day, maximum baromet-

ric pressure, wind speed, wind direction, wind veloc-

ity magnitude, 12V battery, 24V battery minimum 

and averaged DNI (see Table 12). Table 13 shows 

features with coefficients that were shrunk to zero 

when applying a better method between shrinkage 

and PQR. The coefficient of wind direction was 

shrunk to zero from all locations except Pretoria on 

hourly SI. The day coefficient was also shrunk to 

zero from Pretoria and the other two locations. On 

a 24-hour SI, day, wind speed, 12V battery average, 

wind vector magnitude wind direction can be re-

moved. Rejected variables or those with less than 

1.5% importance scores were extracted from the best 

selection method among RF, RRF and QRF. Table 

13 shows that wind direction, wind standard devia-

tion and total rainfall are not important for hourly SI. 

The day is also not important on 24-hour SI. 

Year, month, temperature, DHI, wind speed, 

12V battery and 24V battery were found to have the 

most significant relevance on hourly SI, whilst 

month and minimum temperature were the most rel-

evant variables on 24-hour SI. Hour, DHI, DNI, 

temperature, relative humidity and barometric pres-

sure were the most important features of hourly SI. 

Month and DHI were the most important features of 

24-hour SI. 

4.5 Sensitivity analysis  

Results from Section 4.4 show that hour, DNI, DHI, 

temperature, relative humidity, barometric pressure 

and wind speed should be always considered co-

variates when modelling SI. These results agree with 

previous studies that included variable selection 

when modelling SI. Since RFs are non-parametric 

models, the stability of the models was checked 

through variations in sample sizes. Results given in 

Figure 6 show that the QRF algorithm was not sen-

sitive to any sample size changes. It was demon-

strated to be the most stable random variable 

selection method. The regularisation, PQR, RF and  
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Figure 6: Sensitivity analysis results. 

Table 15: Variables not selected from different sample sizes. 

N Shrinkage PQR RF RRF QRF 

5000 WD WD None None None 

10000 WD WD None None None 

15000 WD WD None None None 

20000 WD WD None None None 

25000 WD WD None None None 

30000 WD WD None None None 

 

RRF models were sensitive to smaller sample size 

changes. However, they were not sensitive to large 

sample size changes. That is, the algorithms became 

more stable as the sample size increased. All of the 

algorithms selected the same variables from all of the 

different sample sizes considered, as shown in Table 

15. However, it has to be noted that all shrinkage 

methods shrunk the coefficient of wind direction to 

zero, while all tree-based algorithms selected all of 

the variables (considered for sensitivity analysis) as 

important features when modelling SI.  

5. Discussion  

Although lasso is the most common variable selec-

tion method among previous SI studies in Southern 

Africa, the results from this study show that, among 

the regularisation algorithms considered, ridge was 

the best in most locations. The focus of this study 

was on comparing the variable selection capabilities 

of different algorithms. Literature confirms that ridge 

is good for only selecting relevant variables in the 

presence of multicollinearity but lasso is good when 

the selection method is further applied as a forecast-

ing model. However, here lasso was the best in only 

one location, Windhoek. Ridge prevents overfitting 

when covariates are correlated and that is why it be-

came the best in Venda and Gaborone where there 

was the highest multicollinearity. Ridge regression is 

a very good algorithm when focusing on dimension 

reduction only, as in this study. The combination of 

ridge and lasso, the elastic net (Sigauke et al., 2023), 

which is expected to overcome their limitations, was 

the best in Durban, where there were outliers, and 

in Pretoria. Pretoria data did not have outliers or 

multicollinearity. Though outliers do not cause seri-

ous problems with lasso and ridge, the two algo-

rithms do not perform well in the presence of many 

outliers. The performance of the elastic net in the 

presence of several outliers is suspected to be at-

tributable to its ability to remove degeneracies and 
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wild behaviours in the data. Since the elastic net pro-

vides a compromise between lasso and ridge regres-

sion it can be expected that the algorithm will per-

form better than both lasso and ridge in a data set like 

Pretoria, with no outliers and low multicollinearity.  

The new QRF algorithm outperformed all varia-

ble selection methods considered in this study on all 

metric evaluations when training all different SI data 

in Table 2. This excellent superiority can be at-

tributed to the ability of QRF to learn any pattern of 

any response for any provided data (Dega et al, 

2023). SI data is non-Gaussian and this study shows 

that the algorithm can be applied to both determin-

istic correction and probabilistic calibration of a 

skewed distribution of meteorological features, as 

claimed by Evin et al (2021). Apart from exhibiting 

strengths of both RFs and QR modelling, the hybrid 

algorithm demonstrated that it handled well the 

weaknesses in both QR and RF modelling sepa-

rately. Though it is difficult to discern truly important 

variables from those that gain importance when ap-

plying a tree-based algorithm on high dimensional 

data that has random correlations, the hybrid algo-

rithm handled excellently very high multicollinearity 

in Gaborone, Venda and Windhoek. QRF was ro-

bust to outliers in Cape Town and Durban SI data, 

although QR depends on the completeness of the 

meteorological data (Ayodele et al., 2016), and its 

prediction errors of the next value in the series are 

often large on short-term forecasting. As a result, the 

noise in the data did not affect the algorithm as 

much as it affected other algorithms. Those are the 

powerful properties the hybrid algorithm inherited 

from QR, being robust to outliers and tolerant to 

noise in the data (Diez-Olivan et al., 2018; Vantas et 

al., 2020). In addition, QRF infers conditional quan-

tiles and gives a non-parametric and accurate way 

of estimating conditional quantiles in high-dimen-

sional cases (Gostkowski and Gajowniczek, 2020).  

Although shrinkage algorithms were outright in-

ferior to the proposed QRF, they had better RMSE 

values than the rest of the other algorithms. This 

showed that the inbuilt k-fold cross-validation and 

regularisation in shrinkage algorithms tackled the 

problem of overfitting quite well. RMSE measures 

deviations of the fitted from the actuals as a good-

ness-of-fit metric and shrinkages were developed to 

achieve both feature selection and regularisation in 

the presence of multicollinearity. Though variance 

reduction done by shrinkages introduces little bias, 

the continued shrinking of the coefficients improves 

the minimisation of the prediction error, thus en-

hancing prediction accuracy by tackling overfitting 

(Fonti and Belitser, 2017). However, the shrinkage 

algorithms work well in small sample sizes and high-

dimensional data, which is why lasso in particular 

performs well in finite sample cases where p may 

grow faster than n (Brink-Jensen and Ekstrom, 

2021). The smallest sample size in this study was 

5000 data points and the smallest variable dimen-

sion was 10. In addition, the process of shrinking co-

efficients focuses on feature relevance while ignoring 

importance. The relevance of a feature is deter-

mined by measuring associations through correla-

tion. Thus, indirectly applying Gaussian and 

parametric modelling assumptions, the data explo-

ration results here showed that SI data is non-Gauss-

ian, as well as the relationship structures between SI 

and its covariates not yet being known. When deal-

ing with SI data it is always best to work with non-

linearity assumptions. Non-parametric assumptions 

are even better. Consequently, these results show 

the superiority of tree-based algorithms against reg-

ularisation algorithms when using the R
2
 and MASE 

metrics. Tree-based algorithms are non-parametric 

models that have a very good ability to learn highly 

irregular patterns in non-linear data (Ibrahim and 

Khatib, 2017). That is why both the RF and RRF al-

gorithms had better R
2
 and adjusted- R

2
 values than 

shrinkages. By pulling together a forest of trees, the 

performance of single trees is greatly boosted in RFs. 

Better MASE values on tree-based algorithms than 

shrinkages to the OOB estimation they do can be 

accounted for through randomly selecting features 

from bootstrap samples. The RF and RRF algorithms 

are noted as having similar feature selection pro-

cesses, but RRF selects features by avoiding features 

not belonging to a feature set used in previous splits 

in the tree model. This avoidance did not lead to any 

superiority of RRF against RF in our SI study, be-

cause all metric values of the two algorithms were 

approximately equal. However, the present results 

agree with with those of Deng and Runger (2012), 

that the RRF was developed to improve the perfor-

mance of RFs amid data sets with significant multi-

collinearity. Adjusted R-squared scores and MASE 

values from the RRF algorithm were slightly higher 

than those from the RF algorithm in Gaborone, 

Venda and Windhoek. Literature highlights the pos-

sibilities of overfitting in tree-based algorithms and 

the packages used in this study to fit them did not 

have inbuilt k-fold cross-validation. So, we attribute 

the reduction of overfitting possibility in tree-based 

algorithms to the partitioning strategy employed on 

all data sets. The very high adjusted R-squared 

scores and very low MASE values from all algo-

rithms compared in this study indicate that our re-

sults agree with the finding of Ludwig et al. (2015) 

that both shrinkages and tree-based algorithms can 

select the right variables. Literature also specifies 

that shrinkage and tree-based algorithms are stable 

variable selection methods, and the results in this 

study have demonstrated that when the algorithms 

selected the same variables on different situational 

data sets they have approximately equal R-squared 

scores on different sample sizes. 
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6. Conclusion  

This study introduced PQR to feature subset selec-

tion in SI studies and compared it with other shrink-

age methods. Though lasso is the most popular 

model among regularisation algorithms it was not 

the best in some locations. Therefore, a comparison 

of the regularised methods should be made before 

the application of a selected variable selection 

method. Tree-based variable selection methods 

were also included in the study and were compared 

with shrinkage methods. It emerged that there are 

data situations when one or other of the techniques 

is best. The study focused on multicollinearity, out-

lier existence, skewness and heavily tail-distribution 

data situations. The hybrid model between QR and 

RFs, that is, the QRF model performed the best in 

most of these situations. The conclusion was drawn 

that the QRF model is the best method for SI data 

sets on which there is often existence of outliers. 

However, the RF in the hybrid model is not sensitive 

to associations through correlations, while QR of-

fered a way of exploring sources of heterogeneity in 

covariates. As a result, it would not be advised to 

conclude the feature selection exercise using results 

from the QRF model only. As features are classified 

as important or not, it is also paramount to measure 

their relevance. Therefore, it would be prudent to 

run the feature selection process in two stages, start-

ing with the relevance of features to associations 

through correlations and then classifying their im-

portance. We conclude that a variable coefficient is 

shrunk to zero if and only if it is not important, but a 

relevant one may not be important. That is, relevant 

variables can be classified as strongly relevant or 

weakly relevant through importance scores. Further 

studies can be done to find how regularisation can 

be done on QRF modelling; that is, developing a 

model that is stable and accurate in multicollinearity, 

outlier existence and heavily-tailed data situations. If 

there exist groups of highly correlated features, then 

group regularisation should be considered. Further 

studies can include interactions in the features as 

well. It can also be concluded that hourly or monthly 

time and temperature are paramount variables in SI 

modelling in Southern Africa. Time can be recorded 

in hourly or monthly units depending on the study. 

Day recorded as a variable is neither relevant nor 

important when modelling SI. Apart from location 

and time horizon, This study also leads to the con-

clusion that covariates paramount for predicting SI 

may vary, depending on the context of the study or 

application.  

 

Acknowledgements 
The authors acknowledge the Research and Innovation 

Office at the National University of Science and Technol-

ogy for funding (Grant No: RDB/57/22) the purchase of 

data from Goetz station. They are also grateful for the ser-

vices and help offered by the Meteorological Services De-

partment staff. 

Author contributions 
Conceptualisation, A.M., D.M. and P.M.; methodology, 

A.M., D.M. and P.M.; software, A.M.; validation, A.M., 

D.M., P.M. and C.S.; formal analysis, A.M., D.M., P.M. 

and C.S.; investigation, A.M., D.M. and P.M.; resources, 

A.M.; data curation, A.M.; writing—original draft prepara-

tion, A.M.; writing—review and editing, A.M., D.M., P.M, 

and C.S.; visualisation, A.M., D.M., P.M. and C.S; super-

vision, D.M., P.M. and C.S.; project administration, A.M. 

All authors have read and agreed to the published version 

of the manuscript. 

Data availability statement 
Most of the data used in this study are from the SAURAN 

website (https://sauran.ac.za, accessed on 12 June 2022). 

References 
Alhamzawi, R. and Ali, H.T.M. 2018. The Bayesian adaptive lasso regression. Mathematical Biosciences 303: 75-82. . 

Asnaghi, V., Pecorino, D., Ottaviani, E., Pedroncini, A., Bertolotto, R.M. and Chiantore, M. 2017. A novel application 

of an adaptable modelling approach to the management of toxic microalgal bloom events in coastal areas. Harmful 
Algae 63: 184-192. 

Ayodele, T. R., Ogunjuyigbe, A. S. O., and Monyei, C. G. 2016. On the global solar radiation prediction methods. 

Journal of Renewable and Sustainable Energy 8: 023702-1; . http://dx.doi.org/10.1063/1.4944968. 

Babar, B., Luppino, L.T., Bostrom, T. and Anfinsen, S.N. 2020. Random forest regression for improved mapping of 

solar irradiance at high latitudes. Solar Energy 198:81-92. 

Belloni, A. and Chernozhukov, V. 2011. l1-penalized quantile regression in high-dimensional sparse models. The An-
nals of Statistics 39(1): 82-130; DOI: 10.1214/10-AOS827. 

Brink-Jensen, K., and Ekstrom, C. T. 2021. Inference for feature selection using the Lasso with high-dimensional data. 

arXiv:1403.4296v1 [stat.ME]; https://doi.org/10.48550/arXiv.1403.4296. 

Celeux, G., Martin-Magniette, M-L., Maugis-Rabusseau, C. and Raftery, A. E. 2015. Comparing model selection and 

regularization approaches to variable selection in model-based clustering. Journal de la Société française de Statis-
tique 155(2): 57–71. 

 Chandiwana, E., Sigauke, C., and Bere, A, 2021. Twenty-four-hour ahead probabilistic global horizontal irradiation 

forecasting using Gaussian process regression. Algorithms 14: 177. . 



22    Journal of Energy in Southern Africa • Vol 35 No 1 • 2024 

Deng, H., and Runger, G. 2012. Feature selection via regularized trees, WCCI 2012. Proceedings of the IEEE World 
Congress on Computational Intelligence, Brisbane, Australia, 10-15 June 2012. . 

Deng, H., Guan, X., Liaw, A., Breiman, L., and Cutler, A. 2022. Package ‘RRF’, CRAN. . 

Diez-Olivan, A., Averos, X., Sanz, R., Sierra, B., and Estvez, I. 2018. Quantile regression forests-based modelling and 

environmental indicators for decision support in broiler farming. Computers and Electronics in Agriculture 161: 

141-150; https://doi.org/10.1016/j.compag.2018.03.025. 

El Motaki, S., and El Fengour, A. 2021. A statistical comparison of feature selection techniques for solar energy fore-

casting based on geographical data. CAMES 28(2): 105–118; DOI: 10.24423/cames.324. 

Evin, G., Lafaysse, M., Taillardat, M., and Zamo, M. 2021. Calibrated ensemble forecasts of the height of new snow 

using quantile regression forests and ensemble model output statistics. Nonlinear. Processes in Geophysics 28: 

467–480; https://doi.org/10.5194/npg-28-467-2021. 

Fonti, V., and Belitser, E. 2017. Feature selection using lasso. VU Amsterdam research paper in business analytics, 30, 

1-25. 

Friedman, J., Hastie, T. and Tibshirani, R. 2010. Regularization Paths for Generalized Linear Models via Coordinate 

Descent. Journal of Statistical Software 33(1): 1-22. 

Freeman, E.A., Frescino, T.S. and Moisen, G.G. 2023. Pick your flavour of random forest. CRAN. 

 Gostkowski, M., and Gajowniczek, K. 2020. Weighted Quantile Regression Forests for Bimodal Distribution Modeling: 

A Loss Given Default Case. Entropy 22: 545; ; DOI:10.3390/e22050545. 

Gu, Y., Fan, J., Kong, L., Ma, S. and Zou, H. 2017. ADMM for High-Dimensional Sparse Penalized Quantile Regres-

sion. Technometrics; DOI: 10.1080/00401706.2017.1345703 . 

Hastie, T., Qian, J. and Tay, K. 2023. An Introduction to glmnet. CRAN. 

Hossain, M. R., Than Oo, A. M. and Shawkat Ali, A. B. M. 2013. The Effectiveness of feature selection method in solar 

power prediction. Journal of Renewable Energy (2013): http://dx.doi.org/10.1155/2013/952613. 

Ibrahim, I.A. and Khatib, T. 2017. A novel hybrid model for hourly global solar radiation prediction using random for-

ests technique and firefly algorithm. Energy Conversion and Management 138 (2017): 413-425. 

Khalid, S., Khalil, T. and Nasreen, S. 2014. A survey of feature selection and feature extraction techniques in machine 

learning. Science and Information Conference Proceeding. London, UK, August 27-29, 2014. . 

Kipruto, E. and Sauerbrei, W. 2022. Comparison of variable selection procedures and investigation of the role of 

shrinkage in linear regression protocol of a simulation study in low-dimensional data. PLOS ONE 17(10): 

e0271240; https://doi.org/10.1371/journal.pone.0271240. 

Koenker, R. 2018. Quantile regression in R: A vignette. CRAN. 

Kursa, M. B., and Rudnicki, W. R. 2022. Package ‘Boruta’. CRAN. 

Lee, j., Wang, W., Harrou, F. and Sun, Y. 2020. Reliable solar irradiance prediction using ensemble learning-based 

models: A comparative study. Energy conversion and management 208(2020): 112-582. . 

Leng, C., Lin Y. and Wahba, G. 2006. A note on the lasso and related procedures in model selection. Statistica Sinica 

16(4): 1273-1284. 

Li, J., Cheng, K., Wang, S., Morstatter, F., Trevino, R. P., Tang, J. and Liu, H. 2017. Feature selection: A data per-

spective. ACM Computing Surveys 50(6) Article 94: 45 pages; ttps://doi.org/10.1145/3136625. 

Ludwig, N., Feuerriegel, S. and Neumann, D. 2015. Putting Big Data analytics to work: Feature selection for forecast-

ing electricity prices using the LASSO and random forests. Journal of Decision Systems 24(1):19-36; 

http://dx.doi.org/10.1080/12460125.2015.994290. 

Maxwell, K., Rajabi, M. and Esterle, J. 2021. Spatial interpolation of coal properties using geographic quantile regres-

sion forest. International Journal of Coal Geology 248: 103869 . 

Mehmood, T., Sæbø, S. and Liland, K. H. 2020. Comparison of variable selection methods in partial least squares re-

gression. Journal of Chemometrics 34:e3226: Doi.org/10.1002/cem.3226. 

Meinshausen, N. 2022. Package ‘quantregForest’. CRAN. 

Mpfumali, P., Sigauke, C., Bere, A. and Mlaudzi, S. 2019. Day Ahead Hourly Global Horizontal Irradiance Forecast-

ing-Application to South African Data. Energies 12: 1-28. . 

Muller, I. M. 2021. Feature selection for energy system modelling: Identification of relevant time series information. 

Energy and AI 4(2021): 100057; https://doi.org/10.1016/j.egyai.2021.100057. 

Munshi, A. and Moharil, R.M. 2022. Solar radiation forecasting using random forest. AIP Conference Proceedings 
2424, 050003 (2022); DOI.org/10.1063/5.0076827 . 

Mutavhatsindi, T., Sigauke, C. and Mbuvha, R. 2020. Forecasting Hourly Global Horizontal Solar Irradiance in South 

Africa, IEEE Access 8: 198873. 

Omoruyi, F. A., Obubu, M., Omeje, I. L., Echebiri, U., Onyekwere, K. C., Lilian, N. O. and Hamzat K. I. 2019. Com-

parison of some variable selection techniques in regression analysis. American Journal of Biomedical Science and 
Research 6(4): 281-293; DOI: 10.34297/AJBSR.2019.06.001044. 

Park, T. and Casella, G. 2008. The Bayesian Lasso, Journal of the American Statistical Association 103(482): 681-686.  

https://doi.org/10.5194/npg-28-467-2021
http://dx.doi.org/10.1155/2013/952613
https://doi.org/10.1371/journal.pone.0271240
https://doi.org/10.1002/cem.3226


23    Journal of Energy in Southern Africa • Vol 35 No 1 • 2024 

Randa, T.M., Tinungki, G.M. and Sunusi, N. 2022. Application of lasso and lasso quantile regression in the identifica-

tion of factors affecting poverty levels in Central Java. International Journal of Academic and Applied Research 

6(4):350-353. 

Ratshilengo, M., Sigauke, C. and Bere, A. 2021. Short-Term Solar Power Forecasting Using Genetic Algorithms: An 

Application Using South African Data. Applied Sciences 11: 4214 . 

Sanchez-Pinto, L. N., Venable, L. R., Fahrenbach, J. and Churpek, M. M. 2018. Comparison of variable selection 

methods for clinical predictive modelling. International Journal of Medical Information 116: 10–17; 

doi:10.1016/j.ijmedinf.2018.05.006. 

Su, M. and Wang, W. 2021. Elastic net penalized quantile regression model. Journal of Computational and Applied 
Mathematics 392 (2021): 113462. . 

Vantas, K., Sidiropoulos, E. and Loukas, A. 2020. Estimating Current and Future Rainfall Erosivity in Greece Using 

Regional Climate Models and Spatial Quantile Regression Forests. Water 12 (2020): 687; 

DOI:10.3390/w12030687 . 

Vaysse, K. and Lagacherie, P. 2017. Using quantile regression forest to estimate the uncertainty of digital soil mapping 

products. Geodema 291 (2017):55-64. . 

Villegas-Mier, C. G., Rodriguez-Resendiz, J., Alvarez-Alvarado, J.M., Jimenez-Hernandez, H. and Odry, A. 2022. Opti-

mized Random Forest for Solar Radiation Prediction Using Sunshine Hours. Micromachines 13: 1406 . 

Wang, L., Wang, Y. and Chang, Q. 2016. Feature selection methods for big data bioinformatics: A survey from the 

search perspective. Methods (2016); doi: http://dx.doi.org/10.1016/j.ymeth.2016.08.014. 

Williams, B., Hansen, G., Baraban, A. and Santoni, A. 2015. A practical approach to variable selection comparison of 

various techniques. Casualty Actuarial Society E-Forum, Summer 2015. 

Yilmaz, U. and Kuvat, O. 2023. Investigating the effect of feature selection methods on the success of overall equip-

ment effectiveness prediction. Uludağ University Journal of The Faculty of Engineering 28(2): 437-452; DOI: 

10.17482/uumfd.1296479. 

Zeng, Z., Wang, Z., Gui, K., Yan, X., Gao, M., Luo, M., Geng, H., Liao, T., Li, X., An, J., Liu, H., He, C., Ning, G. and 

Yang, Y. 2020. Daily global solar radiation in China estimated from high density meteorological observations: A 

random forest model framework. Earth and Space Science 7: e2019EA001058; DOI. 

org/10.1029/2019EA001058. 

Zhang, L. and Wen, J. 2019. A systematic feature selection procedure for short-term data-driven building energy fore-

casting model development. Energy & Buildings 183: 428–442; https://doi.org/10.1016/j.enbuild.2018.11.010 

 
 


