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Abstract

Small wind turbine sites, in general, use a 0.5Hz sampling interval and a 10-minute averaging interval for a feasibility
study or turbine testing. Studies have established that the calculated performance variation of small wind turbines when
averaging at large time intervals. The performance variation is larger for sites with high wind variability. However,
these studies are offen based on low sampling frequency and high averaging intervals.

In the present study, wind speed data has been measured at a high sampling frequency of 20Hz with an ulfrasonic
sensor. A dynamic model of a 50W Rutland wind turbine is used to analyse the simulated performance using wina
speed data at a range of sampling intervals and some averaging intervals. The wind turbine and the anemometer are
installed in a residential area of high wind variability.

The energy is calculated and compared directly using the wind turbine model and using the IEC recommended methoa
of bins. The direct method results show that the rise in instantaneous sampling intervals up to 20 seconds has an
insignificant effect on the energy output. Whereas, for 2-seconds sampled wind data averaged over 10-minutes, energy
overestimates of 19% is observed. However, where only 10-minute interval averaged wind data are available, there is
a significant underestimate in energy by 45%. The energy calculated using the method of bins overestimates the
energy by 19% for high resolution wind data and underestimates by 22% for 10-minute average data.
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Introduction

Small wind turbines, with their low inertia, can
respond rapidly to changes in wind speed. When
analysing a site for potential energy output and the
effects on the wind turbine, it suggests that it is
important to correctly choose a wind speed sampling
time. It also suggests that the averaging of the wind
speed data may have an effect on the calculated
energy production and the impact on the turbine.
This may be particularly evident for small wind
turbines used for charging batteries in residential areas
where there is a high degree of turbulence.

Much work has been done in this area, but it is
worth revisiting as there appear to be situations of
concern. The IEC61400-2 standard, Small Wind
Turbines , states that the sampling frequency should
be at least 0.5Hz (i.e. equal or smaller than a 2-
seconds sampling interval) and averaged over 10-
minutes (IEC Standard 61400-2, 2006).

The measurement of wind speed from a rotating cup
anemometer is often dependent on the number of
pulses sensor per time period (typically one pulse per
revolution). It is possible that over a year, the effects
will be negligible due to the wide range of wind
speeds and patterns of wind speeds. However, over
a day, the effects may be significant, especially if the
turbine is supplying batteries in an off-grid situation.
At the turbulent wind site available to the authors, it
was difficult to correlate the wind speeds at the two
anemometers located just 2m apart. Hence, the
approach adopted in this paper has been to use the
results from a high frequency ultrasonic anemometer
and investigate the change in performance of wind
turbine at different sampling intervals. The effects of
sampling intervals of the wind speed and averaging
of the wind speed are investigated for very small wind
turbines of low inertia.

Energy Prediction from Wind Speeds for Small Wind
Turbines

In 1977, using 1-minute averages and sampling rates
of 2 minutes to 3 hours were not found to
significantly affect the average power for a given
recording season (Doran et al., 1977). Using
modelling, such as Rayleigh and Weibull distributions
gave unreliable estimates of power for low average
wind speed regimes (Doran et al., 1977). It found
that the scatter of data around a mean indicates that
for single turbines, the error is likely to be too large
to be satisfactory.

The study assumed the power curve for a 1.1MW
wind turbine to be a polynomial as a function of the
wind speed. Hence a steady state power curve has
been used. This uses static wind characteristics, which
is not accurate for a time series wind speed. This
will not show the effects of inertia of the turbine,
nor will it take into account changes of a time span
of less than 2 minutes.

Roslan et al. (2018) uses a manufacturers 300W wind
turbine power curve to estimate the power and energy
production using averages of 10-seconds, 2-minutes
and one hour. The wind speeds were binned into
0.5 m/s bins and the total time that the wind speed
was in that bin was used to calculate the energy
production. This ignores the inertia of the turbine,
the rate of change of the wind speed and the turbine
speed as the wind speed changes. On this basis, the
authors found that the 10s average indicated a 21%
increase in energy production compared to the 2-
minute average and a 54% increase over the one
hour averaged data.

Makkawi et al. (2009) describe an investigation of
lower than expected performance of small wind
turbines. It is noted that there is a particularly long
start up time of small turbines, which can be as long
as 100s, which can substantially reduce the energy
output delivered. This relates to the often poor wind
sites in which they are located and also the lack of
blade pitch control. At the site investigated, the 1m/s
bins of wind speeds show a cumulative frequency
which often does not vary much between 4 seconds,
1 minute and 1 hour sampled data. However, in
certain months the 4 second data shows a larger
variation compared to the 1 minute and lhour
sampled data, which are close. This approach has
the limitation of not taking into account the time
variation of the wind speeds, such that a turbine
would need to be able to follow the wind speed
changes in order to extract as much energy as
possible.

Korprasertsak and Leephakpreeda (2018) recognise
that a too low sampling frequency of wind speeds
can lead to aliasing, which is expected to result in
errors of a wind turbine energy output. The authors
proposed variable frequency sampling, for which the
maximum frequency component of the wind would
determine the required sampling frequency, using
Nyquists criterion. The frequency components would
be determined by a running Fourier transform. The
intention is that the sampling frequency could, at
times, be reduced and hence reduce the total amount
of data that is needed to be stored. The power
calculations use a wind turbine-wind power curve,
hence the effects of the time based wind speeds and
the inertia of the wind turbine are not taken into
account. The interesting point is that using Nyquists
criterion to determine the minimum required wind
speed sampling frequency reduces the number of data
points required in this time period by a factor of
4000.

Small wind turbines on rooftops often experience
significant wind turbulence, and in such an
environment, it was found that 10Hz sampling with
10-minute averaging usually gave the peak values for
turbulence intensity and peak power (Tabrizi et al.,
2015), which does affect turbine life. It was found
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that sampling at 1Hz may not capture the full
turbulence power spectra.

A method of small turbine selection was devised by
Battisti et al., (2018) in which there is defined a
required rotor acceleration and available rotor
acceleration in order for the turbine to follow the
wind gusts.

Sunderland et al. (2013) observe that turbulence is
expected to reduce the energy output of a turbine.
To accommodate this, Albers modification to the
steady state wind turbine power curve, in terms of
the turbulence intensity, is used. Another method
proposed is to use a Weibull curve with modification
in terms of the turbulence intensity. As the authors
observe, that the use of the average turbulence
intensity does not give any indication of the range
of, or the time variation of, wind speeds.

One of the ways of characterising a potential wind
turbine site is to determine the wind power density
(Gross, Magar and Pe a, 2020). Yet to do so well,
it was found that dependent on the site, four years
or more of data may be required with one to 24
hour sampling. It is likely that such wind power
density information is not suitable for small wind
turbines, which can react quickly to changes in wind
speed.

Rodriguez-Hernandez, del Ro and Jaramillo (2016)
report that one minute averaging for small wind
turbines better represented the wind speed variation
than 10-minute averages. It states that the averaging
time needs to be selected according to the wind
turbine dynamic response time.

The following work investigates the effect of different
sampling times and averaging on the predicted energy
output using a 50ms (20Hz) simulation time step in
Simulink.

Wind Turbine Model

The major components of the wind turbine model are
the electrical model of the generator, the mechanical
model of the generator, bearings and the blades.

mﬁ A ’;'-*

Figure 3: Wind turbine
generator electrical model

Note that the tail and yaw response has not been
modelled. Hence this work assumes that the wind
turbine is facing the wind at all times.

The wind turbine used as the basis for the comparison
in this paper is the Rutland 910 (Figure 1). The
particular generator (Figure 2) does not produce a
perfect sinusoidal voltage waveform, but the waveform
has a significant 3rd harmonic component.

Figure 1: Power coefficient as a function
of the tip speed ratio blade curve used.

However, the rms voltage has been reasonably
approximated as

V =0642w+ 0.4
where w = rotor speed (radians per second)
The blade model (Hossein, 1999) is a power
coefficient versus tip speed ratio curve (Figure 3) that

(Equation 1)

gives close results to the simulated turbine

performance (Figure 4).

The mechanical parameters used are (Hossein, 1999):
D = 0.002 + 0.001e*28 (Equation 2)

where D is the friction coefficient and the Moment

of inertia, J = 0.1717 kgm?.

The blade Cp-Tsr curve was developed (Figure 3) and

then, using the developed Simulink model of Figure

5, found to compare well (Figure 4) to the model of

(Hossein, 1999). The rotor speed is used to validate

the model because if the rotor speed is correct, then

the output of the generator is also correct.

0.25
0.2

0.15

Cp

0.1

0.05
y =-0.0118x* + 0.0141x2 + 0.1478x - 0.0476

Tsr

Figure 2: Rutland 910 wind turbine, used
as a basis for comparison in this paper
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Figure 5: Simulink model of the turbine system.

Output Power as a Function of Wind Speed

If instantaneous measurements of the wind speed and
wind turbine output power are taken of this low
inertia turbine at a turbulent wind site every 50ms
for 3600s (one hour), a plot can be made of the
output power versus the wind speed using the

simulation model (Figure 6).
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Figure 6: Measured instantaneous power versus wind
speed from the simulated wind turbine model

Figure 6 shows that there is a huge range of output
powers for the same wind speed with the 50ms
sampling. This results from that the turbine is either
accelerating or decelerating while the simulation is
running.

It is clear that the steady state power curve does not
represent the average of the instantaneous readings.
No sensible wind turbine power curve can be derived
directly from this data.

If the IEC standard is used to determine the wind
turbine performance, it involves sampling at least every
2-seconds and averaging over 10-minutes. Due to
the limited extent of the data available to the authors,
only six points could be plotted (Figure 6). However,
the variation is also large enough not to be able to
derive any power curve with any conviction.

This indicates the difficulty of modelling low inertia
wind turbines from sampled real time data in naturally
gust wind conditions. Because of this difficulty, it is
also difficult the energy
production for a given wind speed regime.

to accurately predict
The next section examines the issues related to being
able to reasonably predict the energy output of a
wind turbine by using the simulation model of a wind
turbine and sampled data.
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Figure 7: Simulated turbine rotor speed at differing wind speed sampling
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Figure 8 Zoomed in view of Figure 7 at 155s, showing fast wind speed
changes and the effect of wind speed sampling frequency

Different Sampling Frequencies for Wind Speeds
with 50ms Time Step Simulation

In Figure 7, for clarity, only rotor speeds calculated
from three wind speed sampling times are shown.
The 2-seconds sampling results are close to the 50ms
sampling results. However, the 5-seconds sampling
results are quite different, with phase delays and
changes in the width of wind speed peaks. A closer
examination of one of the peaks of Figure 7 is seen
in Figure 8. Here, the 5-seconds sampling shows a
potential issue in that the delay is long enough, such
that if the wind speed had dropped as fast as it rose,
the turbine speed would show a significant error.

The conclusion is that when predicting the rotor
speed, if the wind speed peak, or trough, is at a
time scale less than that of the sampling time, then
for a wind turbine capable of reacting to the wind
speed peaks and troughs, the simulated rotor speed,
and hence power output of the turbine, will be
incorrect. Hence the wind speed sampling time needs
to be small compared to any rise or fall time of the
wind speeds. The sampling time should also be small
compared to any rise or fall in the speed of the wind

turbine.

Energy Estimation using the direct method and
method of bins

One
method is using the power output from the wind

The energy is calculated using two methods.

turbine model in Simulink at different sampling interval

This method
referred to as the direct method in this analysis.

The other method is the method of bins, as
mentioned in the IEC standard (IEC Standard 61400-
2, 2006).
should be sampled at a rate of 0.5Hz which is used

to calculate the energy output. is

As per the standard, the wind speed

to determine a 10-minute average.

The wind speed data should then be binned into
0.5m/s wide wind speed bins. It should also be
noted that IEC standard for data collection in the
field

investigating

compared to
It is
important to distinguish this point because IEC
method both wind speed the
anemometer and power output from the wind turbine

is a wvery different scenario

in a simulation environment.
samples from
separately, specially for turbine testing. So, the power
curve is the result of the measurements which are

separately. Whereas
investigating the effect of different sampling times in

sampled and averaged
simulation can be different from the investigation in
the actual test site. Power output can vary depending
on the type of data available and how its fed to the
turbine model. This is discussed in detail in Figure
9.

The effect of wind speed sampled at different
sampling and averaging periods on energy calculation
has been analysed. A wind speed of 50ms raw data
was available which was resampled to different lower
frequencies for analysis. Figure 9, with four different
figures, demonstrates the difference through diagrams

and plots.
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Figure 9: A: Diagram illustrating a typical IEC standard test site, B: Diagram illustrating a
Simulation environment with different types of wind data fed to the same wind turbine model with
different power outputs, C and D: Plot illustrating the difference in power outputs of diagram B

Figure 9-A is a typical IEC standard test station where
different meteorological and wind turbine data is
collected through different sensors and logged via a
data acquisition system. In a Simulink environment
illustrated by Figure 9-B, the wind turbine model
produces power every

accordance with the type of wind data available.

output at timestep in

Wind speed data sampled at different frequencies will
The wind data
resolution of the available wind speed and the

produce different power outputs.

simulation time step will determine how continuous
the wind data is. As the sampling interval increases,
the data becomes more discrete. For the wind turbine
model, the turbine time constant must be the same
as the simulation time step, the validity of which is
already demonstrated in Figure 4. It is better to use
a small timestep to generate continuous wind turbine
output. However, the timestep also depends on the
If

the timestep is less than the wind speed sampling

frequency at which the wind speed is sampled.

interval, Simulink, in its default state, will linearly
interpolate values between each data point. Timestep
higher than the windspeed sampling interval will miss
the actual data.

The Simulink analysis discussed in this investigation
uses a 50ms timestep as this was the minimum

sampling interval that could be set in the wind sensor.

Figure 9-C and figure 9-D are the zoomed in versions
of one hour length of power plot for a better view.
These figures intend to show power variation with
the wind speed data available.

The output power from the wind turbine model
indicated as 1 in Figure 9-B is graphically represented
in figure 9-C with the same number and so on for
The output power 1 is due to
wind speed input sampled at 50ms.

the other outputs.
In this scenario,
the wind speed input (50ms sampling) and the turbine
1) can be
continuous output within the simulation environment.

model output (output regarded as
Output power 2 is the resampled power from output
1 and is what the IEC standard sampling will look
like. In regard to power output 3, the wind turbine
model receives a different wind speed resampled at
2-seconds with a sample and hold approach. Output
3 has a different shape than the rest of the power
plot, as seen in Figure 9-C. The different shape is
because of the windspeed resampling, which holds the
sample until every next 2-seconds. The constant wind
the turbine to

accelerate, resulting in a sharp rise and fall of wind

speed between intervals causes

turbine speed and power. The power output 4 from

the model occurs when the input wind data carries
2-seconds samples but is different in that no value

exists between two intervals, unlike the -earlier
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resampling approach using sample and hold. For
power output 4, as the timestep is still 50ms,
Simulink will now perform linear interpolation, which
is why the power output 4 in Figure 9-D looks
smoother than power output 3.

The power variation in each of the mentioned cases
grows in shape and magnitude compared to 50ms
data as the sampling frequency increases. To

Wind speed (m/s)
o =) & S
|
I
|

o

0 500 1000 1500

0 500 1000 1500

investigate the effects of different sampling times in
Simulink, 50ms sampled wind data adequately
represents the actual dynamically changing wind
speed. In Simulink, therefore, it is important to note
the difference in power output and calculated energy
not just as the sampling interval varies but also in
how the resampling is implemented and what kind of
data is fed into the model.

Windspeed @ 50ms sampling -raw data
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Figure 10: A: Plot illustrating raw wind speed data of 50ms sampling interval and IEC standard
wind speed data, B: Plot illustrating wind turbine model power output with raw wind data and
10-minute averaged power of 2-seconds sampled data

Energy calculation using the direct method

The wind speeds in Figure 10-A were measured with
an ultrasonic anemometer with 50ms sampling in a
turbulent wind area and are used as the basis for
comparison. Due to the amount of data involved,
the wind speed series consists of several combined
from the same location to form a wind data of 60-
minute span. The 50ms wind speed and power were
resampled at 2-seconds intervals and averaged over
10-minute span to compare the energy estimation
with the IEC recommendation. Both plot of wind
speed and power in Figure 10A and Figure 10B
clearly demonstrates the difference in IEC standard
data and a 50ms raw data.

Figure 9-D demonstrated the power output 3 and
power output 4 variations for approximately 35-
seconds interval. But if the same two power output
is averaged over 10-minute interval for a 60-minute
data length, the variations are very small as can be
seen in Figure 10-B.

The simulation time step has been kept constant at
50ms. In Figure 11-A, a vertical line separates the
energy calculated with instantaneous samples and the
average of 2-seconds samples. For Figure 11-A, the

bars on the left (instantaneous sampling) are the total
energy calculated using resampled wind speed output
at various intervals fed to the wind turbine model
separately. The power from the model is then used
to calculate the energy for each sampling interval (e.g.
power output 3 in Figure 9-B). The instantaneous
energy seems to be less affected than the averaged
energy. The most precise measure of the energy is
at 50ms sampling, represented by the red bar in the
far left of both bar plots of Figure 11.

The time plot of power gets significantly different in
shape and values as the sampling frequency of wind
speed changes, as demonstrated in section 4.
However, it is notable that the sampling interval up
to 30-seconds does not significantly change the total
energy calculated using direct method for this example
of wind speed. The average percentage difference of
all energy calculated from 0.5-second to 30-second
instantaneous sampling interval is less than 4%.
However, as the averaging interval increases, the
energy seems to increase as well as seen in Figure
11-A. The power from the wind turbine model is
averaged over 10-minute interval of 2-second data.
The 10-minute average overestimates the energy by
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19%, whereas the energy at 1-minute interval is much
closer to the energy calculated at 50ms.

It is also important to note that the all averaged
energy calculations are based on 2-seconds sampling
interval. In a scenario, where only 10-minute data
are available, and is fed to the wind turbine model,
the energy decreases significantly by 45% for the 1

hour span of available wind data as shown in Figure

Energy calculated using direct method
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11-B. Figure 10-A shows the data vast difference in
wind data resolution between 50ms and 10-minute
averaged intervals which when passes through the
wind turbine model results in significant variations in
both for instantaneous power output and energy
output as demonstrated by graphs (Figure 10-B and
Figure 11).
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Figure 11 A: Bar plot of energy showing the variations with instantaneous sampling and when averaged; B

Energy from Binned Wind Speeds

When the 50ms sampled wind data (Figure10-A) from
the one hour of wind data, is binned into 0.5m/s as
per the standard, the results can be seen in Figure
12. If the wind speeds are sampled every 2-seconds,
the distribution (Figure 13) is similar but has some
notable differences in the bins of 3-5m/s and 10-
11.5m/s.

If now a 5-minute average is taken of the 2-seconds
sampled data (Figure 14), a quite different wind speed
distribution occurs. Although there is a shortage of
time span for this approach, it illustrates an energy
prediction issue.

When the wind speeds are further averaged to 10-
minute interval, it again results in very different wind
distributions (Figure 15).
used to estimate the wind turbine energy output from

If these distributions are

the wind turbine power curve, errors can be expected.
However, for the present analysis, a steady state
power curve is derived (Equation 3) using the wind
turbine model at different constant wind speeds.

6000
[ 0,055 Samping time

0 5 10 15 20
Wnd speed bins (m/s)

Figure 12: Wind speed distribution for 50ms
sampled wind speeds. Energy 53.82kJ

P = 0.59V2 - 1.58V- + 0.1813 (Equation 3)

In this example, the energy predicted from the 50ms
and 2-seconds sampled wind data bins is very similar
at about 54kJ, but once the wind speeds are
averaged, the calculated energy drops to about 37kd.
However, the energy calculated directly from the 50ms
sampled wind data gives an energy level of 43.51kJ.
Hence the bins either overestimate the energy by
19% for instantaneous sampling or underestimate it
by 11% and 22% in case for 5 minutes and 10-
minutes averaging interval.
With much more data, such as over a vyear, it is
possible that a more representative wind speed
distribution will occur even for 10-minute averaged
data. That may be good for grid feeding systems
with constant tariffs, but for variable tariff systems, or
for off grid systems, the amount of energy expected
to be delivered on an hourly or daily basis is important
as this will determine how much energy may be used
and how much battery storage is required.
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Figure 13: Wind speeds bins with 2 second
sampling of wind speeds. Energy = 53.83kJ
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Conclusion

For the situation where the wind turbine can be
expected to closely follow the changes in wind
direction, a simulation investigation has been
undertaken with measured wind speeds to determine
the effect on the calculated energy output of the
turbine, with different sampling intervals and averaging
of the wind data. The energy at different sampling
intervals was calculated directly using the model wind
turbine and the method of bins.

For the wind speed data used, the effect of sampling
time from 50ms up to 20-seconds on the energy
output calculated through the direct method was not
significant. ~ Although, the shape and magnitude of
the wind speed start to change as the sampling
interval increases beyond 2-seconds.  The lower
sampling time might be important for studies involving
turbulence and structural fatigue. However, if the
samples are averaged, a considerable difference in
energy can occur. For the wind data used for the
example, an overestimate of the energy of 19% is
observed for data averaged at 10-minute intervals.
From the investigation, it was also observed that in
case where only 10-minute interval of wind data were

25 sampling 10min average |

w

Frequency
" 9
- N oo

o
o

o

0 5 10 15 20
Wind speed bin (m/s)

Figure 15: Binned wind speeds for 2-
seconds sampling with 10-minute
average. Energy = 35.55kJ

only available, the energy overestimation would reach
a drastic value of 42%.

Dividing wind data into bins to calculate the energy
production from the wind turbine power curve showed
that averaged sampled wind speeds underestimated the
energy by 22%. At the same time, an overestimation
of 19% was observed even at a lower sampling
interval.

Overall, the result suggests that it might be better for
this turbine to use sampled wind data at 2-seconds,
without binning, than to bin or average the data.
However, energy calculated directly using 1-minute
average of 2-second sampled data produced only a
2% error. Therefore, 1 minute average could also
be used considering long term data collection if both
precision and volume of data are critical.

Whilst long time period wind data (e.g. for one year)
may alleviate the differences, small, off grid systems,
with limited energy storage (e.g. in batteries), need to
be able to accurately predict the energy production
over a short period of time, such as an hour. Only
then can the required energy storage be determined,
as well as the number of days when there will not
be enough energy. This requires a high sampling
rate, higher than the fastest changes in the wind
speed

30 Journal of Energy in Southern Africa - Vol 33 No 4 - December 2022



References

Battisti, L. et al. (2018) Small Wind Turbine Effectiveness in the Urban Environment, Renewable Energy. Elsevier Ltd,
129, pp. 102113. doi: 10.1016/j.renene.2018.05.062.

Doran, J. C. et al. (1977) Accuracy of Wind Power Estimates.

Gross, M., Magar, V. and Pe a, A. (2020) The Effect of Averaging, Sampling, and Time Series Length on Wind
Power Density Estimations, Sustainability, 12(8), p. 3431. doi: 10.3390/s5u12083431.

Hossein, G. (1999) Dynamic and Predictive Dynamic Wind Turbine Control. MONASH UNIVERSITY.

IEC Standard 61400-2 (2006) International Standard - Part 2: Small Wind Turbines, 61010-1 & lec:2001.

Korprasertsak, N. and Leephakpreeda, T. (2018) Nyquist-Based Adaptive Sampling Rate for Wind Measurement Under
Varying Wind Conditions, Renewable Energy. Elsevier Ltd, 119, pp. 290298. doi: 10.1016/j.renene.2017.12.018.

Makkawi, A., Celik, A. and Muneer, T. (2009) Evaluation of Micro-Wind Turbine Aerodynamics, Wind Speed Sampling
Interval and its Spatial Variation, Building Services Engineering Research and Technology, 30(1), pp. 714. doi:
10.1177/0143624408096343.¢

Rodriguez-Hernandez, O., del Ro, J. A. and Jaramillo, O. A. (2016) The Importance of Mean Time in Power Resource
Assessment for Small Wind Turbine Applications, Energy for Sustainable Development. International Energy
Initiative, 30, pp. 3238. doi: 10.1016/j.esd.2015.10.008.

Roslan, E. et al. (2018) Effect of Averaging Period on Wind Resource Assessment for Wind Turbine Installation Project
at UNITEN, in AIP Conference Proceedings, p. 020257. doi: 10.1063/1.5066898.

Sunderland, K. et al. (2013) Small Wind Turbines in Turbulent (Urban) Environments: A Consideration of Normal and
Weibull Distributions for Power Prediction, Journal of Wind Engineering and Industrial Aerodynamics. Elsevier,
121, pp. 7081. doi: 10.1016/j.jweia.2013.08.001.

Tabrizi, A. B. et al. (2015) Rooftop Wind Monitoring Campaigns for Small Wind Turbine Applications: Effect of
Sampling Rate and Averaging Period, Renewable Energy. Elsevier Ltd, 77, pp. 320330. doi:
10.1016/j.renene.2014.12.037

31 Journal of Energy in Southern Africa - Vol 33 No 4 - December 2022



